24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.
To find the net ionic equation we must first write the balanced equation for the reaction. We must bear in mind that the reagents Ca(NO3)2 and Na2S are in the aqueous state and as product we will have CaS in the solid state, since it is not soluble in water and NaNO3 in the aqueous state.
The balanced equation of the reaction will be:

Ca(NO3)2(aq) + → Ca(aq) + 2Na(s)NO3Now, c(aq)ompounds in the aqueous state can be written in their ionic form, so the reaction will transform into:Na2S +

So, the answer will be option A
For the answer to the question above, I can't help you directly because I don't have a calculator right now. But I'll show you how to solve this.
<span>use the freezing point depression formula for this one: delta T = i * m * K where K is a constant, m is the molality (mol solute/kg solvent), and i is the van'hoff factor the van hoff factor is the number of ions that your salt dissociates into. Since it's an ALKALI flouride salt, how many ions? k is just a constant, you get it from a table in your textbook somewhere So you have everything to solve for the molality of the solution, once you did that, multiplying it by the mass of water to find the mols of the salt. Take the mass of the salt and divide by this mols to figure out the molar mass, and then compare it with the periodic table to identify the salt.
</span>
<u>Mole solute</u> x mass of Water = Mol solute<u>
</u>kg Solvent
then
Mass of solute x <u> 1 </u> = molar mass
mole of solute
Answer:

Explanation:
Atomic radius is the measurement from the nucleus to the outer edge of the electron cloud.
As you go down a group (vertically) the atomic radius increases because more electron shells are added. As you go across a period horizontally, the atomic radius decreases.
If we look at the halogens group (17), we see they follow this order from top to bottom:
F - Fluorine
Cl - Chlorine
Br - Bromine
I - Iodine
Since it increases down the group, iodine must have the largest atomic radius.