1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nastasia [14]
3 years ago
11

A student holds two lead weights, each of mass 6.4 kg. When the students’ arms are extended horizontally, the lead weights are 0

.84 m from the axis of rotation and the student rotates with an angular speed of 2.4 rad/sec. The moment of inertia of student plus stool is 9.4 kg m2 and is assumed to be constant; i.e., the student’s arms are massless! Then the student pulls the lead weights horizontally to a radius 0.23 m from the axis of rotation.
1). Find the new angular speed of the student?
2). Find the kinetic energy of the rotating system (comprised of student, stool, and weights) before and after he pulls the weights inward?
Physics
2 answers:
wariber [46]3 years ago
8 0

Answer:

1) \omega_f=10.5354\,rad.s^{-1}

2) KE_i=53.0833\,J & KE_f=97.0946\,J

Explanation:

Given:

Mass of lead weight in each hand, m=6.4\,kg

distance of weights while arms extend, r_i=0.84\,m

initial angular speed of student holding the masses in extended arms, \omega_i=2.4\,rad.s^{-1}

moment of inertial of student and stool, I_s=9.4\,kg.m^2

final radius of lead weights, r_f=0.23\,m

1.

<em>Moment of inertia due to lead weights in the extended arms:</em>

I_w_i=2\times m.r_i\,^2

I_w_i=2\times 6.4\times 0.84^2

I_w_i=9.0317\,kg.m^2

∴Total moment of inertia initially

I_i=I_s+I_w_i

I_i=9.4+9.0317

I_i=18.4317\,kg.m^2

<em>Moment of inertia due to lead weights in the pulled-in arms:</em>

I_w_f=2\times m.r_f\,^2

I_w_f=2\times 6.4\times 0.23^2

I_w_f=0.6771\,kg.m^2

∴Total moment of inertia in final condition:

I_f=I_s+I_w_f

I_f=9.4+0.6771

I_f=10.0771\,kg.m^2

  • According to the law of conservation of angular momentum:

I_i.\omega_i=I_f.\omega_f

18.4317\times 2.4=10.0771\times \omega_f

\omega_f=4.3898\,rad.s^{-1}

2.

Total Kinetic Energy before the student pulls his arm:

KE=\frac{1}{2} I_i.\omega_i\,^2

KE=\frac{1}{2} \times 18.4317\times 2.4^2

KE_i=53.0833\,J

Total Kinetic Energy after the student pulls his arm:

KE=\frac{1}{2} I_f.\omega_f\,^2

KE=\frac{1}{2} \times 10.0771\times 4.3898^2

KE_f=97.0946\,J

Mashcka [7]3 years ago
4 0

Answer:

(1) ω = 4.3 rad/sec

(2) 52.99 j and 93.4 j  

Explanation:

from the question we are given the following:

mass of weight (m) = 6.4 kg

initial radius (ri) = 0.84 m

final radius (rf) = 0.23 m

angular speed (ω) = 2.4 rad/sec

moment of inertia of the student and stool (I) = 9.4 kgm^{2}

find the new angular speed and the kinetic energy of the rotating system before and after pulling the weight inwards.

(1)   We can find the new angular momentum from the equation

initial angular momentum = final angular momentum

where

  • angular momentum = (total inertia) x angular speed
  • total inertia = inertia of student and stool + inertia of the masses
  • inertia of the masses = mr^{2}

the equation now becomes

( I + 2m(ri)^{2}) x ω =  ( I + m(rf)^{2}) x ω

(9.4 + (2 X 6.4 X 0.84^{2})) X 2.4 = ( 9.4 + (2 X 6.4 X 0.23^{2})) X ω

44.2 = 10.1 X ω

ω = 4.3 rad/sec

(2) kinetic energy = 0.5 x I x ω^{2}

  kinetic energy before = 0.5 x 18.4 x 2.4^{2} = 52.99 j  

  kinetic energy after = 0.5 x 10.1 x 4.3^{2} = 93.4 j  

You might be interested in
Suppose that a simple pendulum consists of a small 60.0 g bob at the end of a cord of negligible mass. If the angle 0 between th
erik [133]

Based on the mass of the bob and the angle between the cord and the vertical, the pendulum length is 0.50m.

The maximum kinetic energy can be found to be 9.42 x 10⁻⁴J.

<h3>What is the pendulum length?</h3>

This can be found as:

= g-force / w²

Solving gives:

= 9.8 / 4.43²

= 0.4998 m

= 0.50 m

<h3>What is the maximum kinetic energy?</h3>

This can be found as:

= 0.5 × m × w² × A²

Maximum kinetic energy is:

= 0.5 × 60 × 10⁻³ × (4.43 × 0.4998 x 0.08 rad)²

= 9.42 x 10⁻⁴J

Find out more on maximum kinetic energy at brainly.com/question/24690095.

5 0
2 years ago
A physics student drops a rock from a 55m cliff. How long does it take to hit the ground?
lara [203]

Answer: 9.9 seconds

Explanation:

that's just how long it takes

6 0
3 years ago
Read 2 more answers
The nuclear power used for electricity is produced by
svet-max [94.6K]

Answer:

<h3>b.fission. </h3>

Explanation:

<h3>Please mark my answer as a brainliest.Please follow me ❤❤❤</h3>
5 0
2 years ago
Read 2 more answers
Awdfwkjbfgkjsenfkjnsekjfgnesklnslkenges
forsale [732]

Answer:

yes

Explanation:

3 0
3 years ago
Read 2 more answers
a certain projetor uses a concave mirror for projecting an object's image on a screen .it produces on image that is 4 times bigg
IrinaK [193]

Answer:

f = 1 m

Explanation:

The magnification of the lens is given by the formula:

M = \frac{q}{p}

where,

M = Magnification = 4

q = image distance = 5 m

p = object distance = ?

Therefore,

4 = \frac{5\ m}{p}\\\\p = \frac{5\ m}{4}\\\\p = 1.25\ m

Now using thin lens formula:

\frac{1}{f}=\frac{1}{p}+\frac{1}{q}\\\\\frac{1}{f} = \frac{1}{1.25\ m}+\frac{1}{5\ m}\\\\\frac{1}{f} = 1\ m^{-1}\\\\

<u>f = 1 m</u>

6 0
3 years ago
Other questions:
  • How often do you rely on media for scientific information to make decisions in your life? (No weather answer please)
    12·2 answers
  • A ray of yellow light ( f = 5.09 × 1014 hz) travels at a speed of 2.04 × 108 meters per second in
    8·1 answer
  • Which statements describe intensity? Check all that apply.
    15·2 answers
  • What two forms might terraces take when they become part of a continent
    15·1 answer
  • Suppose a body has a force of 10 pounds acting on it to the right, 25 pounds acting on it −135° from the horizontal, and 5 pound
    13·1 answer
  • What is the Activation Energy for this reaction?
    13·2 answers
  • Obtain the zeroes of polynomial
    8·1 answer
  • Write a letter to a Friend congratulating her / him for her excellent result in annual examination. class 5 the​
    13·1 answer
  • Please help!! This is the last question and i’m unsure! I will mark brainliest! Please try to provide a explanation you don’t ha
    13·1 answer
  • A 120 -kg crate accelerates toward the positive x-direction . If the magnitude of the force due to friction is 74.4 N , what for
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!