1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nastasia [14]
3 years ago
11

A student holds two lead weights, each of mass 6.4 kg. When the students’ arms are extended horizontally, the lead weights are 0

.84 m from the axis of rotation and the student rotates with an angular speed of 2.4 rad/sec. The moment of inertia of student plus stool is 9.4 kg m2 and is assumed to be constant; i.e., the student’s arms are massless! Then the student pulls the lead weights horizontally to a radius 0.23 m from the axis of rotation.
1). Find the new angular speed of the student?
2). Find the kinetic energy of the rotating system (comprised of student, stool, and weights) before and after he pulls the weights inward?
Physics
2 answers:
wariber [46]3 years ago
8 0

Answer:

1) \omega_f=10.5354\,rad.s^{-1}

2) KE_i=53.0833\,J & KE_f=97.0946\,J

Explanation:

Given:

Mass of lead weight in each hand, m=6.4\,kg

distance of weights while arms extend, r_i=0.84\,m

initial angular speed of student holding the masses in extended arms, \omega_i=2.4\,rad.s^{-1}

moment of inertial of student and stool, I_s=9.4\,kg.m^2

final radius of lead weights, r_f=0.23\,m

1.

<em>Moment of inertia due to lead weights in the extended arms:</em>

I_w_i=2\times m.r_i\,^2

I_w_i=2\times 6.4\times 0.84^2

I_w_i=9.0317\,kg.m^2

∴Total moment of inertia initially

I_i=I_s+I_w_i

I_i=9.4+9.0317

I_i=18.4317\,kg.m^2

<em>Moment of inertia due to lead weights in the pulled-in arms:</em>

I_w_f=2\times m.r_f\,^2

I_w_f=2\times 6.4\times 0.23^2

I_w_f=0.6771\,kg.m^2

∴Total moment of inertia in final condition:

I_f=I_s+I_w_f

I_f=9.4+0.6771

I_f=10.0771\,kg.m^2

  • According to the law of conservation of angular momentum:

I_i.\omega_i=I_f.\omega_f

18.4317\times 2.4=10.0771\times \omega_f

\omega_f=4.3898\,rad.s^{-1}

2.

Total Kinetic Energy before the student pulls his arm:

KE=\frac{1}{2} I_i.\omega_i\,^2

KE=\frac{1}{2} \times 18.4317\times 2.4^2

KE_i=53.0833\,J

Total Kinetic Energy after the student pulls his arm:

KE=\frac{1}{2} I_f.\omega_f\,^2

KE=\frac{1}{2} \times 10.0771\times 4.3898^2

KE_f=97.0946\,J

Mashcka [7]3 years ago
4 0

Answer:

(1) ω = 4.3 rad/sec

(2) 52.99 j and 93.4 j  

Explanation:

from the question we are given the following:

mass of weight (m) = 6.4 kg

initial radius (ri) = 0.84 m

final radius (rf) = 0.23 m

angular speed (ω) = 2.4 rad/sec

moment of inertia of the student and stool (I) = 9.4 kgm^{2}

find the new angular speed and the kinetic energy of the rotating system before and after pulling the weight inwards.

(1)   We can find the new angular momentum from the equation

initial angular momentum = final angular momentum

where

  • angular momentum = (total inertia) x angular speed
  • total inertia = inertia of student and stool + inertia of the masses
  • inertia of the masses = mr^{2}

the equation now becomes

( I + 2m(ri)^{2}) x ω =  ( I + m(rf)^{2}) x ω

(9.4 + (2 X 6.4 X 0.84^{2})) X 2.4 = ( 9.4 + (2 X 6.4 X 0.23^{2})) X ω

44.2 = 10.1 X ω

ω = 4.3 rad/sec

(2) kinetic energy = 0.5 x I x ω^{2}

  kinetic energy before = 0.5 x 18.4 x 2.4^{2} = 52.99 j  

  kinetic energy after = 0.5 x 10.1 x 4.3^{2} = 93.4 j  

You might be interested in
Scientists are able to use body waves to determine what makes up the different layers of the Earth's interior. What characterist
k0ka [10]

Answer:

P-waves travel through liquids and solid while S-waves only travel through solids.

Explanation:

Scientists are able to use the fact that P-waves travel through both solids and liquids and waves travel through only solids to determine what makes the different layers of the Earth.

5 0
2 years ago
Given a 45 45 90 prism with index of 1.5, immersed in air. The hypotenuse acts as the reflecting face by TIR. A ray of light ent
Genrish500 [490]

Answer:

83.6°

Explanation:

For the ray to be totally internally reflected, at the boundary, the angle of refraction is 90. Using the law of refraction where

n₁sinθ₁ = n₂sinθ₂ where n₁ = refractive index of prism = 1.5, θ₁ = critical angle in prism, n₂ = refractive index of air = 1 and θ₂ = refractive angle = 90°.

So, substituting these values into the equation,

n₁sinθ₁ = n₂sinθ₂

1.5 × sinθ₁ = 1 × sin90

1.5 × sinθ₁  = 1

sinθ₁ = 1/1.5

sinθ₁ = 0.6667

θ₁  = sin*(0.6667)

θ₁  = 41.8°

So, for total internal reflection, an incidence angle of 41.8° is required. So, a full convergence angle of 2 × 41.8° = 83.6° is required for the whole bundle of rays.

5 0
3 years ago
How much time does it take the cheetah to travel 500 meters, if its average speed is 70 meters per second?
Anettt [7]

l=500m

speed=70m/s

t=?

t=500/70=7.14s

7 0
3 years ago
Starting from zero, the electric current takes 2 seconds to reach half its maximum possible value in an RL circuit with a resist
Leno4ka [110]

Answer:

time=4s

Explanation:

we know that in a RL circuit with a resistance R, an inductance L and a battery of emf E, the current (i) will vary in following fashion

i(t)=\frac{E}{R}(1-e^\frac{-t}{\frac{L}{R}}), where imax=\frac{E}{R}

Given that, at i(2)=\frac{imax}{2} =\frac{E}{2R}

⇒\frac{E}{2R}=\frac{E}{R}(1-e^\frac{-2}{\frac{L}{R}})

⇒\frac{1}{2}=1-e^\frac{-2}{\frac{L}{R}}

⇒\frac{1}{2}=e^\frac{-2}{\frac{L}{R}}

Applying logarithm on both sides,

⇒log(\frac{1}{2})=\frac{-2}{\frac{L}{R}}

⇒log(2)=\frac{2}{\frac{L}{R}}

⇒\frac{L}{R}=\frac{2}{log2}

Now substitute i(t)=\frac{3}{4}imax=\frac{3E}{4R}

⇒\frac{3E}{4R}=\frac{E}{R}(1-e^\frac{-t}{\frac{L}{R}})

⇒\frac{3}{4}=1-e^\frac{-t}{\frac{L}{R}}

⇒\frac{1}{4}=e^\frac{-t}{\frac{L}{R}}

Applying logarithm on both sides,

⇒log(\frac{1}{4})=\frac{-t}{\frac{L}{R}}

⇒log(4)=\frac{t}{\frac{L}{R}}

⇒t=log4\frac{L}{R}

now subs. \frac{L}{R}=\frac{2}{log2}

⇒t=log4\frac{2}{log2}

also log4=log2^{2}=2log2

⇒t=2log2\frac{2}{log2}

⇒t=4

5 0
3 years ago
Find the measure of angle x in the figure below:
Serga [27]

Answer:

51°

Explanation:

4 0
2 years ago
Other questions:
  • An object of weight W is in freefall close to the surface of Earth. The magnitude of the force that the object exerts on Earth i
    11·2 answers
  • A singly ionized helium atom is in the ground state. It absorbs energy and makes a transition to the n = 3 excited state. The io
    8·1 answer
  • If you have just combed your hair and you hold the comb near a small, uncharged object, what will most likely happen?
    9·2 answers
  • On a particular day, Denali had a temperature of -23°C at its peak and 13°C at its base. What could be the reason for this tempe
    5·1 answer
  • What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resti
    5·1 answer
  • Which of the following is not an example of doing work?
    8·2 answers
  • FIRST ANSWER GETS BRAINLIST:
    8·2 answers
  • The same strength force was exerted in the same direction on both Object A and Object B. Why did Object A go faster than Object
    15·1 answer
  • If I could snap my fingers and move Earth to an orbital distance at 9 AU, what would happen to the strength of the Sun's gravita
    11·1 answer
  • According to Newton’s 2nd law of motion: objects at a rest will remain in rest unless acted upon
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!