1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nastasia [14]
3 years ago
11

A student holds two lead weights, each of mass 6.4 kg. When the students’ arms are extended horizontally, the lead weights are 0

.84 m from the axis of rotation and the student rotates with an angular speed of 2.4 rad/sec. The moment of inertia of student plus stool is 9.4 kg m2 and is assumed to be constant; i.e., the student’s arms are massless! Then the student pulls the lead weights horizontally to a radius 0.23 m from the axis of rotation.
1). Find the new angular speed of the student?
2). Find the kinetic energy of the rotating system (comprised of student, stool, and weights) before and after he pulls the weights inward?
Physics
2 answers:
wariber [46]3 years ago
8 0

Answer:

1) \omega_f=10.5354\,rad.s^{-1}

2) KE_i=53.0833\,J & KE_f=97.0946\,J

Explanation:

Given:

Mass of lead weight in each hand, m=6.4\,kg

distance of weights while arms extend, r_i=0.84\,m

initial angular speed of student holding the masses in extended arms, \omega_i=2.4\,rad.s^{-1}

moment of inertial of student and stool, I_s=9.4\,kg.m^2

final radius of lead weights, r_f=0.23\,m

1.

<em>Moment of inertia due to lead weights in the extended arms:</em>

I_w_i=2\times m.r_i\,^2

I_w_i=2\times 6.4\times 0.84^2

I_w_i=9.0317\,kg.m^2

∴Total moment of inertia initially

I_i=I_s+I_w_i

I_i=9.4+9.0317

I_i=18.4317\,kg.m^2

<em>Moment of inertia due to lead weights in the pulled-in arms:</em>

I_w_f=2\times m.r_f\,^2

I_w_f=2\times 6.4\times 0.23^2

I_w_f=0.6771\,kg.m^2

∴Total moment of inertia in final condition:

I_f=I_s+I_w_f

I_f=9.4+0.6771

I_f=10.0771\,kg.m^2

  • According to the law of conservation of angular momentum:

I_i.\omega_i=I_f.\omega_f

18.4317\times 2.4=10.0771\times \omega_f

\omega_f=4.3898\,rad.s^{-1}

2.

Total Kinetic Energy before the student pulls his arm:

KE=\frac{1}{2} I_i.\omega_i\,^2

KE=\frac{1}{2} \times 18.4317\times 2.4^2

KE_i=53.0833\,J

Total Kinetic Energy after the student pulls his arm:

KE=\frac{1}{2} I_f.\omega_f\,^2

KE=\frac{1}{2} \times 10.0771\times 4.3898^2

KE_f=97.0946\,J

Mashcka [7]3 years ago
4 0

Answer:

(1) ω = 4.3 rad/sec

(2) 52.99 j and 93.4 j  

Explanation:

from the question we are given the following:

mass of weight (m) = 6.4 kg

initial radius (ri) = 0.84 m

final radius (rf) = 0.23 m

angular speed (ω) = 2.4 rad/sec

moment of inertia of the student and stool (I) = 9.4 kgm^{2}

find the new angular speed and the kinetic energy of the rotating system before and after pulling the weight inwards.

(1)   We can find the new angular momentum from the equation

initial angular momentum = final angular momentum

where

  • angular momentum = (total inertia) x angular speed
  • total inertia = inertia of student and stool + inertia of the masses
  • inertia of the masses = mr^{2}

the equation now becomes

( I + 2m(ri)^{2}) x ω =  ( I + m(rf)^{2}) x ω

(9.4 + (2 X 6.4 X 0.84^{2})) X 2.4 = ( 9.4 + (2 X 6.4 X 0.23^{2})) X ω

44.2 = 10.1 X ω

ω = 4.3 rad/sec

(2) kinetic energy = 0.5 x I x ω^{2}

  kinetic energy before = 0.5 x 18.4 x 2.4^{2} = 52.99 j  

  kinetic energy after = 0.5 x 10.1 x 4.3^{2} = 93.4 j  

You might be interested in
A metal ball rolls from rest at Point A down the track to Point E as shown below.
Tju [1.3M]

Answer:

Explanation:

Velocity is at its greatest when kinetic energy is at its max which is when all the ball's energy has been transformed from potential energy to kinetic energy which is at the lowest point in its travels (assuming the ball is rolling down a ramp). You have no picture here so this answer is a general one, not a specific one.

8 0
3 years ago
Eac of the two Straight Parallel Lines Each of two very long, straight, parallel lines carries a positive charge of 24.00 m C/m.
Cloud [144]

Answer:

The magnitude of the electric field at a point equidistant from the lines is 4.08\times10^{5}\ N/C

Explanation:

Given that,

Positive charge = 24.00  μC/m

Distance = 4.10 m

We need to calculate the angle

Using formula of angle

\theta=\sin^{-1}(\dfrac{\dfrac{d}{2}}{2d})

\theta=\sin^{-1}(\dfrac{1}{4})

\theta=14.47^{\circ}

We need to calculate the magnitude of the electric field at a point equidistant from the lines

Using formula of electric field

E=\dfrac{2k\lambda}{r}\times2\cos\theat

Put the value into the formula

E=\dfrac{2\times9\times10^{9}\times24.00\times2\times10^{-6}\cos14.47}{2.05}

E=408094.00\ N/C

E=4.08\times10^{5}\ N/C

Hence, The magnitude of the electric field at a point equidistant from the lines is 4.08\times10^{5}\ N/C

6 0
3 years ago
Help please! This question is driving me crazy
Varvara68 [4.7K]

Answer:

-10.8°, or 10.8° below the +x axis

Explanation:

The x component of the resultant vector is:

x = 3.14 cos(30.0°) + 2.71 cos(-60.0°)

x = 4.07

The y component of the resultant vector is:

y = 3.14 sin(30.0°) + 2.71 sin(-60.0°)

y = -0.777

Therefore, the angle between the resultant vector and the +x axis is:

θ = atan(y / x)

θ = atan(-0.777 / 4.07)

θ = -10.8°

The angle is -10.8°, or 10.8° below the +x axis.

3 0
3 years ago
Which of The following is the best example of water changing from a liquid to gas
expeople1 [14]

Answer:

There are no examples but this should be evaporation

Explanation:

4 0
3 years ago
How is acceleration calculated?
steposvetlana [31]

Answer:

Acceleration is the change in velocity divided by time

Explanation:

This is the correct answer because distance divided by time is the position. Speed multiplied by time is the distance. And acceleration is not just velocity, but the change in velocity over time.

4 0
3 years ago
Read 2 more answers
Other questions:
  • If we have less power, we most likely have (2 points)
    14·1 answer
  • Please help! Will give Brainliest!!! Describe where to look on the Periodic Table to find elements which have similar reactivity
    10·1 answer
  • If a 8.0 kg mass is hung on the end of a spring, it is stretched 0.78 meters as a result. What is the force constant of the spri
    6·2 answers
  • How does scale influence the physical and chemical properties of a substance
    8·1 answer
  • What is the original source of energy for gasoline?
    5·2 answers
  • List the three ways in which water reaches the atmosphere and tell which way accounts for the most of the water in the atmospher
    10·1 answer
  • What would happen if you threw a grenade into a woodchipper?
    9·2 answers
  • Which cell structure allows a plant to carry out photosynthesis?
    14·2 answers
  • What is the current in a circuit with a 4.5 V battery and a 9 Ω resistor?
    13·2 answers
  • Various radial points on a rotating Ferris wheel have: I. different linear velocities II. different angular velocities III. equa
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!