The x -component of the object's acceleration is 2 m/s².
<h3>What's the resultant force along x- direction?</h3>
- Forces along x axis direction are as follows
- 4N along +x axis, so it's taken as +4 N
- 2N along -x axis , so it's taken as -2N.
- Resultant force along x direction = 4N - 2N = 2 N which is along + ve x direction.
<h3>What's the acceleration along x axis direction?</h3>
- As per Newton's second law, Force = mass × acceleration of the object
- Force along x axis= mass × acceleration along x axis= 2N
- Acceleration = 2/ mass = 2/1 = 2 m/s²
Thus, we can conclude that the acceleration along x axis is 2 m/s².
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The forces in (Figure 1) are acting on a 1.0 kg object. What is ax, the x-component of the object's acceleration?
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ1
First we gotta use an equation of motion:

Our vertical distance d= 100 m, initial vertical speed u = 0 m/s (because velocity is fully horizontal), and vertical acceleration a = 9.8 m/s2 because of gravity. Let's plug it all in!

Now we just need to solve for t:

Hit the calculators, and you'll get 4.5 seconds!
Answer:
h = 2.64 meters
Explanation:
It is given that,
Mass of one ball, 
Speed of the first ball,
(upward)
Mass of the other ball, 
Speed of the other ball,
(downward)
We know that in an inelastic collision, after the collision, both objects move with one common speed. Let it is given by V. Using the conservation of momentum to find it as :


V = 7.2 m/s
Let h is the height reached by the combined balls of putty rise above the collision point. Using the conservation of energy as :



h = 2.64 meters
So, the height reached by the combined mass is 2.64 meters. Hence, this is the required solution.
Answer:
4.4 square meters = 47 square foot
Explanation:
We have
1 meter = 3.28084 foot
1 square meter = 3.28084 x 3.28084 square foot = 10.76 square foot
4.4 square meters = 4.4 x 10.76 = 47.36 square foot = 47 square foot
4.4 square meters = 47 square foot
Answer:
-589.05 J
Explanation:
Using work-kinetic energy theorem, the work done by friction = kinetic energy change of the base runner
So, W = ΔK
W = 1/2m(v₁² - v₀²) where m = mass of base runner = 72.9 kg, v₀ = initial speed of base runner = 4.02 m/s and v₁ = final speed of base runner = 0 m/s(since he stops as he reaches home base)
So, substituting the values of the variables into the equation, we have
W = 1/2m(v₁² - v₀²)
W = 1/2 × 72.9 kg((0 m/s)² - (4.02 m/s)²)
W = 1/2 × 72.9 kg(0 m²/s² - 16.1604 m²/s²)
W = 1/2 × 72.9 kg(-16.1604 m²/s²)
W = 1/2 × (-1178.09316 kgm²/s²)
W = -589.04658 kgm²/s²
W = -589.047 J
W ≅ -589.05 J