1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anyanavicka [17]
3 years ago
11

How can i solve this​

Physics
1 answer:
ozzi3 years ago
8 0

Answer:

Que?     ME NO UnderStand DJn

You might be interested in
The coefficient of static friction between a 3.00 kg crate and the 35.0o incline is 0.300. What minimum force F must be applied
Yakvenalex [24]

Answer:

So the minimum force is

32.2Newton

Explanation:

To solve for the minimum force, let us assume it to be F (N)

So

F=mgsinA

But

=>>>> coefficient of static friction x (F + mgcosA

=>3 x 9.8 x sin35 = 0.3 x (F + 3 x 9.8 x cos35)

So making F subject of formula

F + 24.0 = 56.2

F = 32.2N

3 0
3 years ago
What is the following atmospheric property associated with?
Nadya [2.5K]

Answer:

Your answer should be Cooled Air

Explanation:

6 0
3 years ago
What conclusions can you draw about an object that either has an OVERALL negative charger OR an OVERALL positive charge?
sveticcg [70]

Answer:

The object is also positively charged because same or alike charges repel

Explanation:

6 0
4 years ago
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
3 years ago
A horizontal force of 400 N is exerted on a 2.0-kg ball as it rotates (at
frutty [35]

Answer:

the speed of the ball is 10 m/s

Explanation:

Given;

magnitude of exerted force, F = 400 N

mass of the ball, m = 2 kg

radius of the circle, r = 0.5

The speed of the ball is calculated by applying centripetal force formula;

F = \frac{mv^2}{r} \\\\v^2 = \frac{Fr}{m}\\\\v = \sqrt{\frac{Fr}{m}}\\\\ v = \sqrt{\frac{400*0.5}{2}}\\\\v = 10 \ m/s

Therefore, the speed of the ball is 10 m/s

6 0
3 years ago
Read 2 more answers
Other questions:
  • Why do stretching exercises increase flexibility more than cardio exercises?
    11·1 answer
  • How many hydrogen and carbon atoms in a diamond
    15·1 answer
  • Two billiard balls (each with mass equal to 170 g) collide head-on along the same line. Billiard ball A originally traveled east
    7·1 answer
  • Explain why an equation may be homogenous with respect to its unit but still be incorrect​
    6·1 answer
  • * THE ANSWER IS D * Silicon (chemical symbol Si) is located in Group 14, Period 3. Which is silicon most likely
    7·2 answers
  • We intend to measure the open-loop gain (LaTeX: A_{open}A o p e n ) of an actual operational amplifier. The magnitude of LaTeX:
    7·1 answer
  • A body is dropped from the roof of a 20 m high building by how much:
    11·1 answer
  • is it possible that the philippines can solely rely from geothermal energy? state your opinion why or why not?​
    11·1 answer
  • Please answer the question below. No files, No Docs, or any Link. ONLY REAL ANSWER. Whoever, answers this question will get 50 p
    5·1 answer
  • Determine
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!