Answer:
Energy May be measured in joule
Explanation:
Below is an attachment containing the solution.
Answer:
a) T ’= 0.999 s
, b) t = 3596.4 s
Explanation:
The angular velocity of a simple pendulum is
w = √g / L
The angular velocity, frequency and period are related
w = 2π f = 2π / T
2π / T = √ g / L
T = 2π √ L / g
L = T² g / 4π²
L = 1² 9.8 / 4π²
L = 0.248 m
To know the effect of the temperature change let's use the thermal expansion ratios
ΔL = α L ΔT
ΔL = 24 10⁻⁶ 0.248 (-4 - 20)
ΔL = 142.8 10⁻⁶ m
Lf - L = -142. 8 10⁻⁶
Lf = 142.8 10⁻⁶ + 0.248
Lf = 0.2479 m
Let's calculate new period
T ’= 2π √ L / g
T ’= 2π √ (0.2479 / 9.8)
T ’= 0.999 s
We can see that the value of the period is reduced so that the clock is delayed
b) change of time in 1 hour
When the clock is at 20 ° C in one hour it performs 3600 oscillations, for the new period the time of this number of oscillations is
t = 3600 0.999
t = 3596.4 s
Therefore the clock is delayed almost 4 s
Answer:
I = 2.667 kg m²
Explanation:
The moment of inertia of a body can be calculated by the expression
I = ∫ L² dm
For high symmetry bodies the expressions of the moment of inertia are tabulated, for a rod with its axis of rotation at its midpoint it is
I = m L²
let's calculate
I = 2 4²
I = 2.667 kg m²