Answer:
Its inductance L = 166 mH
Explanation:
Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR
R = V/I = 5.62/0.698 = 8.052 Ω
Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from
V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'
Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω
WE now find the reactance X of the coil from
Z² = X² + R²
X = √(Z² - R²)
= √(97.5² - 8.05²)
= √(9506.25 - 64.8025)
= √9441.4475
= 97.17 Ω
Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.
L = X/2πf
= 97.17/2π(93.1 Hz)
= 97.17 Ω/584.965 rad/s
= 0.166 H
= 166 mH
Its inductance L = 166 mH
Assuming Earth's gravity, the formula for the flight of the particle is:
<span>s(t) = -16t^2 + vt + s = -16t^2 + 144t + 160. </span>
<span>This has a maximum when t = -b/(2a) = -144/[2(-16)] = -144/(-32) = 9/2. </span>
<span>Therefore, the maximum height is s(9/2) = -16(9/2)^2 + 144(9/2) + 160 = 484 feet. </span>
F = m*a
30 N = (ma + mb) * a
30 = 5*a
a = 6 m/s ^2
F de B em A
30 - F de B,A = ma * a
30 - F de B em A = 3 * 6
30 - 18 = F de B em A
12 = F de B em A
Resposta: 6 m/s^2 e 12N
Bate com o gabarito, man? Ou eu tô viajando aqui?
Abç!