Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.
<span>Answer
is: activation energy of this reaction is 212,01975 kJ/mol.
Arrhenius equation: ln(k</span>₁/k₂) = Ea/R (1/T₂ - 1/T₁<span>).
k</span>₁<span> = 0,000643
1/s.
k</span>₂ = 0,00828
1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
1/T₁<span> = 1/622 K = 0,0016 1/K.
1/T</span>₂<span> = 1/666 K =
0,0015 1/K.
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol · (-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol · (-0,0001 1/K).
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
<span>ice cube have lower kinetic energy that molecules in a radiators</span>
Answer:
High temperature and low pressure
Explanation:
According to the kinetic molecular theory, gases are composed of small particles called molecules which are in constant motion.
At high temperature and low pressure, gas molecules possess high kinetic energy and move at high velocities hence intermolecular interaction is almost none existent and real gases approach the behavior of ideal gases.
Answer:
Kindly check the explanation section.
Explanation:
PS: kindly check the attachment below for the required diagram that is the diagram showing solid sodium chloride looks like at the atomic level.
The chemical compound known as sodium chloride, NaCl has Molar mass: 58.44 g/mol, Melting point: 801 °C and
Boiling point: 1,465 °C. The structure of the solid sodium chloride is FACE CENTRED CUBIC STRUCTURE. Also, solid sodium chloride has a coordination number of 6: 6.
In the diagram below, the positive sign shows the sodium ion while the thick full stop sign represent the chlorine ion.