A. is the right answer since work is negative and Q which is heat in negative also
The third equation of free fall can be applied to determine the acceleration. So that Paola's acceleration during the flight is 39.80 m/
.
Acceleration is a quantity that has a direct relationship with velocity and also inversely proportional to the time taken. It is a vector quantity.
To determine Paola's acceleration, the third equation of free fall is appropriate.
i.e
=
± 2as
where: V is the final velocity, U is the initial velocity, a is the acceleration, and s is the distance covered.
From the given question, s = 20.1 cm (0.201 m), U = 4.0 m/s, V = 0.
So that since Poala flies against gravity, then we have:
=
- 2as
0 =
- 2(a x 0.201)
= 16 - 0.402a
0.402a = 16
a = 
= 39.801
a = 39.80 m/
Therefore Paola's acceleration is 39.80 m/
.
Visit: brainly.com/question/17493533
It can be a) 12Hz.................
Answer:
The time interval is 
Explanation:
From the question we are told that
The constant acceleration is 
The displacement is
According to the second equation of motion we have that
given that the blade started from rest
which is the initial angular velocity is 0
So
=> 
substituting values
=> 
=> 
Answer:
Explanation:
Formula and givens
- λ = c / f
- λ is the wavelength
- c = the speed of light
- f = the frequency
- c = 3*10^8
- f = 7.89 * 10^14
λ = ?
Solution
λ = 3*10^8 / 7.89*10^14
λ = 3*10^8/7.89*10^14
λ = 2.36 * 10^7
λ = 236 nanometers. What you use as your solution depends on what what you have been taught.