Prophase metaphase anaphase telophase
Answer:
First Quarter and Third Quarter.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the Moon across to the Earth sphere.
Since gravity variates with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance between them.
For example, seeing the image below, point A is closer to the Moon than point b, and at the same time the center of mass of the Earth will feel more attracted to the Moon than point B. Therefore, that creates a tidal bulge in point A and point B.
When the Sun and the Moon are alight with respect to the Earth, then the Sun tidal force contributes to the tidal force of the Moon over the Earth. That makes the high tides even higher (spring tides).
However, when the Sun is not in the same line than the Moon (the Moon is at 90° with respect to the Sun), then the low tides are higher and the high tides are lower. That scenario is known as neap tides.
Therefore, that happens when the Moon is at First Quarter and Third Quarter.
Answer:
Bernoulli's equation states mathematically that if a fluid is flowing through a tube and the tube diameter decreases, then the velocity of the fluid increases, the pressure decreases, and the mass flow (and therefore volumetric flow) remains constant so long as the air density is constan
Explanation:
Answer: 1608.39 J
Explanation: Given that the
mass M = 42kg
U = 11.5m/s
V = 3.33m/s
how much work did friction do
Work done = Force × distance
Work done = Ma × distance
But acceleration a = V/t
Work done = M × V/t × d
Work done = M × V × d/t
Where d/t = velocity
Therefore,
Work done = M × U × V
Work done = 42 × 11.5 × 3.33
Work done = 1608.39 J
Answer:
0 Newtons
Explanation:
The velocity of the object does not change, it is a constant 54 km/hr. When velocity does not change, acceleration is zero. Using the formula Force = mass x acceleration, we find:
mass = 1200 kg
acceleration = 0
F = (1200)(0) = 0