Answer:
40 m/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 60 m/s
Height (h) = 100 m
Acceleration due to gravity (g) = 10 m/s²
Final velocity (v) =?
The velocity at height 100 m can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
v² = 60² – (2 × 10 × 100)
v² = 3600 – 2000
v² = 1600
Take the square root of both side
v = √1600
v = 40 m/s
Thus, velocity at height 100 m is 40 m/s
Answer:
With the increase in depth, age of layer increases.
Explanation:
According to the law of superposition, the layer of the Earth that is present in the deep is considered as the oldest layer while on the other hand, those layer which is present on the top of all layers is considered as youngest layer of earth. When we move from the top layer towards the bottom layer, the age of layer increases or in other words, when we move upward the age of the layer decreases so label the layers of earth on the basis of this phenomenon.
Answer:
de Broglie wavelength of an electron with speed 0.78 c taking relativistic effects into account is given as:
λ = 1.943 * 10^(-12) m
Explanation:
Given:
v = 0.78 c
we know:
c = speed of light = 3 * 10^8 m/s
mass of electron = m = 9.1 × 10-31 kg
de Broglie wavelength:
In 1924 a French physicist Louis de Broglie assumed that for particles the same relations are valid as for the photon:
(Dual-nature of a particle)
Let the wavelength be = λ
According to de Broglie:
λ = h/p = h/mv
where h is planck's constant = 6.626176 x 10^-34 Js
and p is momentum.
Taking relativistic effects into account, we know that the momentum of the particle changes by a factor 'γ'.
At low speed, γ is almost 1. However, at very high velocity (comparable to light), it has a great effect on momentum.
γ = 
γ = 1.6
Now at 0.78 c, considering relativistic effects, we know:
λ = h/γp = h/γ*mv
= (6.62 x 10^(-34))/(1.6*0.78*3*10^(8)*9.1 × 10-31
λ = 1.943 * 10^(-12) m
Answer:
A torque of 102.5375 Nm must be exerted by the fireman
Explanation:
Given:
The rate of water flow = 6.31 kg/s
The speed of nozzle = 12.5 m/s
Now, from the Newton's second law we have
The reaction force to water being redirected horizontally (F) = rate of change of water's momentum in the horizontal direction
thus we have,
F = 6.31 kg/s x 12.5m/s
or
F = 78.875 N
Now,
The torque (T) exerted by water force about the fireman's will be
T = (F x d)
or
T = 78.875 N x 1.30 m
T = 102.5375 Nm
hence,
<u>A torque of 102.5375 Nm must be exerted by the fireman</u>
Potential energy = mass x g x height.
height = potential energy/mass x g
acceleration due to gravity on earth is 9.8 m/s
filling in your variables gives us:
490/50 x 9.8 = 1 meter