Answer:
0.4
Explanation:
F-Fr=ma where F is applied force, Fr is friction, m is mass and a is acceleration.
Since the mass is moving with a constant velocity, there's no acceleration hence
where N is the weight of object and \mu is coefficient of kinetic friction.
the subject

Substituting F for 8 N and N for 20 N

Therefore, coefficient of kinetic friction is 0.4
Answer:
All
Explanation:
I'm not sure what you meant but Newton's third law which basically states that every action has an equal and opposite reaction applies to <em>all</em> objects. So I think the answer is all.
The final velocity is +15.0 m/s
Explanation:
The motion of the cart is a uniformly accelerated motion (=at constant acceleration), therefore we can use the following suvat equation:

where
v is the velocity at time t
u is the initial velocity
a is the acceleration
t is the time
For the cart in this problem, we have:
u = +3.0 m/s (initial velocity)
(acceleration)
t = 8.0 s (time)
Substituting, we find the final velocity:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
If it is diamagnetic then it magnetise opposite to magnetic field
if paramagnetic it weekly magnetise in direction of magnetic field
if ferromagnetic it strongly magnetise in direction of magnetic field
Answer:
g' = 13.5 m/s²
Explanation:
The acceleration due to gravity on surface of earth is given by the formula:
g = GMe/Re² --------------- euation 1
where,
g = acceleration due to gravity on surface of earth
G = Universal Gravitational Constant
Me = Mass of Earth
Re = Radius of Earth
Now, the the acceleration due to gravity on the surface of Kepler-62e is:
g' = GM'/R'² --------------- euation 1
where,
g' = acceleration due to gravity on surface of Kepler-62e
G = Universal Gravitational Constant
M' = Mass of Kepler-62e = 3.57 Me
R' = Radius of Kepler-62e = 1.61 Re
Therefore,
g' = G(3.57 Me)/(1.61 Re)²
g' = 1.38 GMe/Re²
using equation 1:
g' = 1.38 g
where,
g = 9.8 m/s²
Therefore,
g' = 1.38(9.8 m/s²)
<u>g' = 13.5 m/s²</u>