Treatment water from the plant would affects the communities present in the downstream of the river.
Answer: Option (a)
<u>Explanation:</u>
Wastewater treatment plant is a process used to treat the water that flows from the rivers, streams, and lakes.This plant removes the dust, sand, sediments present in the river water.
When this treated water is released into the downriver stream, it affects the health of aquatic organisms present in that stream.Use of chemicals in treating the wastewater may cause genetic problems to the communities present in that region.
It also causes air pollution and more energy is needed for the treatment process and thus affects the ecosystem.
Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13
Answer:
I think is Number 2
The rate at which calcium chloride is equal to the rate at which sodium chloride is produced.
Let me know if I'm wrong.
Answer:
b. able to travel through a vacuum.
Explanation:
The most distinguishing factor of an electromagnetic waves is that they are able to travel through a vacuum.
These waves do not require materials in a medium for propagation.
- Electromagnetic waves are formed by the propagation of the electric and magnetic fields.
- They vibrate at an angle of 90° .
- They are unlike like mechanical waves that requires that requires materials in medium for their propagation.
To solve this problem it is necessary to apply the concepts related to the law of Malus which describe the intensity of light passing through a polarizer. Mathematically this law can be described as:

Where,
Indicates the intensity of the light before passing through the polarizer
I = Resulting intensity
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light
From the law of Malus when the light passes at a vertical angle through the first polarizer its intensity is reduced by half therefore

In the case of the second polarizer the angle is directly 60 degrees therefore



In the case of the third polarizer, the angle is reflected on the perpendicular, therefore, its angle of index would be

Then,



Then the intensity at the end of the polarized lenses will be equivalent to 0.09375 of the initial intensity.