Answer:
2 molecules of water represents 3.32 x 10^-24 moles of water.
Explanation:
To find the solution to this problem, you have to use the concept of Avogadro´s number, that is in 1 mol of any element o compound there are 6.022 x 10^23 molecules. Then,
1 mol H2O ------------- 6.022 x 10^23 molecules
x= 3.32 x 10^-24 ---- 2 molecules.
2 molecules of water represents 3.32 x 10^-24 moles of water.
Answer:
Unbalanced
Explanation:
You need to have the same number of atoms on both sides for it to be balanced
<u>Answer:</u> The freezing point of solution is -0.454°C
<u>Explanation:</u>
Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.
The equation used to calculate depression in freezing point follows:

To calculate the depression in freezing point, we use the equation:

Or,

where,
Freezing point of pure solution = 0°C
i = Vant hoff factor = 2
= molal freezing point elevation constant = 1.86°C/m
= Given mass of solute (KCl) = 5.0 g
= Molar mass of solute (KCl) = 74.55 g/mol
= Mass of solvent (water) = 550.0 g
Putting values in above equation, we get:

Hence, the freezing point of solution is -0.454°C
Answer:
D. 7
Explanation:
The halogens are found in Group 7 of the Periodic Table. If Bromine is a halogen, then that means it would be found in Group 7. Also, elements in Group 7 have 7 electrons in its outer shell, Bromine would have 7 electrons in its outer shell.