HBr and HF are both monoprotic Arrhenius acids—that is, in aqueous solution, they dissociate and ionize to give hydrogen ions. A strong acid ionizes completely; a weak acid ionizes partially.
In this case, HBr, being a strong acid, would ionize completely in water to yield H+ and Br- ions. However, HF, being a weak acid, would ionize only to a limited extent: some of the HF molecules will ionize into H+ and F- ions, but most of the HF will remain undissociated.
pH is, by definition, a measurement of the concentration of hydrogen ions in solution (pH = -log[H+]). A higher concentration of hydrogen ions gives a lower pH, while a lower concentration of hydrogen ions gives a higher pH. At 25 °C, a pH of 7 indicates a neutral solution; a pH less than 7 indicates an acidic solution; and a pH greater than 7 indicates a basic solution.
If we have equal concentrations of HBr and HF, then the HBr solution will have a greater concentration of hydrogen ions in solution than the HF solution. Consequently, the pH of the HBr solution will be less than the pH of the HF solution.
Choice A is incorrect: Strong acids like HBr dissociate completely, not partially.
Choice B is incorrect: While the initial concentration of HBr and HF are the same, the H+ concentration in the HBr solution is greater. Since pH is a function of H+ concentration, the pH of the two solutions cannot be the same.
Choice C is correct: A greater H+ concentration gives a lower pH value. The HBr solution has the greater H+ concentration. Thus, the pH of the HBr solution would be less than that of the HF solution.
Choice D is incorrect for the reason why choice C is correct.
You can tell that the atom is in the excited state because:
- Electron configuration should follow the 2-8-8-2 rule, meaning that the inner shell should be filled before the next shell can start holding electrons.
- Instead of the atom's electron configuration being in the ground state at 2-8-8-1, electrons from the second shell have jumped to the third.
Answer:
The same kind of coffee, the same coffee maker, the same amount and type of water, and the same electrical sources were used.
Explanation:
I think Bleach formula is <span>NaClO</span>
<span>Use the sequence E (NaCl, Na2SO4, then Na2S). Silver is insoluble as a chloride, so it would be removed first, the others (Pb and Ni) are soluble as chlorides(Note; lead chloride is soluble as a hot solution but will ppt when cold), next, PbSO4 is insoluble but NiSO4 is soluble so use Na2SO4 to separate lead from nickel. Lastly, nickel sulfide is insoluble and can be separated and collected.
Hope I helped :)</span>