Answer : The fugacity in the solution is, 16 bar.
Explanation : Given,
Fugacity of a pure component = 40 bar
Mole fraction of component = 0.4
Lewis-Randall rule : It states that in an ideal solution, the fugacity of a component is directly proportional to the mole fraction of the component in the solution.
Now we have to calculate the fugacity in the solution.
Formula used :

where,
= fugacity in the solution
= fugacity of a pure component
= mole fraction of component
Now put all the give values in the above formula, we get:


Therefore, the fugacity in the solution is, 16 bar.
Answer:
Led is a light-emitting diode, a semiconductor diode that glows when a voltage is applied. So, there is always a sure result of whether a substance conducts electricity or not as the light glows. That is why it is a better option for testing conduction of electricity.
Explanation:
Answer:
a. because it is an element
Explanation:
its pure because it only has one type of atom, making it an element
Answer:
in both nucleophil attach the c and leaving group leave but in acyl nu. subsituation c of carbonyl because of double bond with o have bigger positive charge and is better electrophil so do it faster,also alkyl nu. subsituation can have rearangment if going from sn1 and in sn2 sterichemistry of molecule change , acyl nu. subsituation most of time is better
The balanced reaction
is:
4NH3 + 3O2 --> 2N2 + 6H2O
<span>We
are given the amount of reactants to be used for the reaction. This
will be the starting point of our calculation.</span>
83.7g of O2 ( 1 mol / 32 g) = 2.62 mol O2
2.81 moles of NH3
From the balanced reaction, we have a 4:3 ratio of the reactants. The limiting reactant would be oxygen. We will use the amount for oxygen for further calculations.
<span>2.62 mol O2</span><span> (6 mol H2O / 3 mol O2) (18.02 g H2O / 1 mol H2O) = 94.42 g H2O</span>