<span> Let’s determine the initial momentum of each car.
#1 = 998 * 20 = 19,960
#2 = 1200 * 17 = 20,400
This is this is total momentum in the x direction before the collision. B is the correct answer. Since momentum is conserved in both directions, this will be total momentum is the x direction after the collision. To prove that this is true, let’s determine the magnitude and direction of the total momentum after the collision.
Since the y axis and the x axis are perpendicular to each other, use the following equation to determine the magnitude of their final momentum.
Final = √(x^2 + y^2) = √(20,400^2 + 19,960^2) = √814,561,600
This is approximately 28,541. To determine the x component, we need to determine the angle of the final momentum. Use the following equation.
Tan θ = y/x = 19,960/20,400 = 499/510
θ = tan^-1 (499/510)
The angle is approximately 43.85˚ counter clockwise from the negative x axis. To determine the x component, multiply the final momentum by the cosine of the angle.
x = √814,561,600 * cos (tan^-1 (499/510) = 20,400</span>
<span>a thin fibrous cartilage between the surfaces of some joints, e.g., the knee.</span>
Answer: True
Explanation:
Atomic number is defined as the number of protons or the number of electrons that are present in an electrically neutral atom.
Atomic number = Number of protons = number of electrons = 2
Electronic configuration represents the total number of electrons that a neutral element contains. We add all the superscripts to know the number of electrons in an atom.
The electronic configuration will be 
As its duplet is already complete and it has noble gas configuration , it is stable with 2 valence electrons.
This is a conversion problem. 760 Torr is equal to 1 atmosphere. so we can can solve now. 5,550torr*(1atmosphere/760torr)=7.3atmospheres. since the two torrs cancel out with cross multiplication we are left in atmosphere units.