D.
Solar energy is converted to wind energy which then drive surface currents.
Answer:
v_f = 24.3 m / s
Explanation:
A) In this exercise there is no friction so energy is conserved.
Starting point. On the roof of the building
Em₀ = K + U = ½ m v₀² + m g y₀
Final point. On the floor
Em_f = K = ½ m v_f²
Emo = Em_g
½ m v₀² + m g y₀ = ½ m v_f²
v_f² = v₀² + 2 g y₀
let's calculate
v_f = √(10² + 2 9.8 25)
v_f = 24.3 m / s
Answer:
Explanation:
a. The equation of Lorentz transformations is given by:
x = γ(x' + ut')
x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.
x' = 0
t' = 5.00 s
u =0.800 c,
c is the speed of light = 3×10⁸ m/s
Then,
γ = 1 / √ (1 - (u/c)²)
γ = 1 / √ (1 - (0.8c/c)²)
γ = 1 / √ (1 - (0.8)²)
γ = 1 / √ (1 - 0.64)
γ = 1 / √0.36
γ = 1 / 0.6
γ = 1.67
Therefore, x = γ(x' + ut')
x = 1.67(0 + 0.8c×5)
x = 1.67 × (0+4c)
x = 1.67 × 4c
x = 1.67 × 4 × 3×10⁸
x = 2.004 × 10^9 m
x ≈ 2 × 10^9 m
Now, to find t we apply the same analysis:
but as x'=0 we just have:
t = γ(t' + ux'/c²)
t = γ•t'
t = 1.67 × 5
t = 8.35 seconds
b. Mavis reads 5 s on her watch which is the proper time.
Stanley measured the events at a time interval longer than ∆to by γ,
such that
∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)
c. According to Stanley,
dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m
which is the same as in part (a)
Answer:
The required diagram is shown in the figure. When an object is placed in front of the convex lens, i.e., between 2F
1
and F
1
, its image is formed beyond 2F
2
on the other side of the lens. The image is real, inverted and enlarged.
solution
Answer:
c. the volume of the part of the ship that lies below the water's surface.
Explanation:
As stated in the problem, Archimedes' Principle tells us that that buoyant force on an object is equal to the weight of fluid it displaces. The volume of water that a ship displaces is the volume it occupies below the surface.