Ecozone<span> is the broadest biogeographic division of the Earth's land surface, based on distributional patterns of terrestrial organisms.</span> A climatograph<span> is used to show the precipitation and the temperature of a region.
</span>
The object that had the most 1000 ton weight has the most momentum
Answer:
Potential energy of book = 7.5 J
Explanation:
Given:
Weight of book = 5 N
Height of shelf = 1.5 meter
Find:
Potential energy of book
Computation:
Weight = Mass x Acceleration of gravity
Mass x Acceleration of gravity = 5 N
Potential energy = Mass x Acceleration of gravity x Height
Potential energy of book = Mass x Acceleration of gravity x Height
We know that;
Mass x Acceleration of gravity = 5 N
So,
Potential energy of book = 5 x 1.5
Potential energy of book = 7.5 J
Answer:
Explanation:
We shall solve this problem on the basis of pinciple that water is incompressible so volume of flow will be equal at every point .
rate of volume flow of one stream
= cross sectional area x velocity
= 8.4 x 3.5 x 2.2 = 64.68 m³ /s
rate of volume flow of other stream
= 6.6 x 3.6 x 2.7
= 64.15 m³ /s
rate of volume flow of rive , if d be its depth
= 11.2 x d x 2.8
= 31.36 d
volume flow of river = Total of volume flow rate of two streams
31.36 d = 64.15 + 64.68
31.36 d = 128.83
d = 4.10 m /s .
<u>Answer :</u>
(a) d = 0.25 m
(b) d = 0.5 m
<u>Explanation :</u>
It is given that,
Frequency of sound waves, f = 686 Hz
Speed of sound wave at
is, v = 343 m/s
(1) Perfectly destructive interference occurs when the path difference is half integral multiple of wavelength i.e.
........(1)
Velocity of sound wave is given by :




Hence, when the speakers are in phase the smallest distance between the speakers for which the interference of the sound waves is perfectly destructive is 0.25 m.
(2) For constructive interference, the path difference is integral multiple of wavelengths i.e.
( n = integers )
Let n = 1
So, 


Hence, the smallest distance between the speakers for which the interference of the sound waves is maximum constructive is 0.5 m.