Answer:
a simple voltaic cell is made by immersing one zinc plate and one copper plate inside water diluted sulfuric acid solution.
Answer:
A bonding that occurs between high electronegative atoms such are N, F, O and H atoms, is called a hydrogen bond. Hydrogen bond is a very strong bond. (C)
If hydrogen bonds are not formed between H atoms and N, F, O atom, then the atoms interact through dispersion forces (also known as london dispersion forces). Dispersion forces are weak and they are temporary forces formed by overlapping of orbitals. (B)
Answer:
The answer is in the explanation.
Explanation:
The KHP is an acid used as standard in titrations to find concentration of bases as NaOH.
The reaction that explain this use is:
KHP + NaOH → KNaP + H2O
<em>where 1 mole of KHP reacts per mole of NaOH</em>
That means, at equivalence point of a titration in which titrant is NaOH, the moles of KHP = Moles of NaOH added
With the moles of KHP = Moles of NaOH and the volume used by titrant we can find the molar concentration of NaOH.
The moles of KHP are obtained from the volume and the concentration as follows:
Volume(L)*Concentration (Molarity,M) = moles of KHP
If the concentration is more or less than 0.100M, the moles will be higher or lower. For that reason, we need to know the concentration of KHP but is not necessary to be 0.100M.
Answer:
0.292 g/mL.
Explanation:
From the question given above, the following data were obtained:
Mass of object = 28.1 g
Volume of object = 96.2 mL
Density of object =..?
Density of an object is simply defined as the mass of the object per unit volume of the object. Mathematically, it can be expressed as:
Density = mass / volume
With the above formula, we can obtain the density of the object as follow:
Mass of object = 28.1 g
Volume of object = 96.2 mL
Density of object =..?
Density = mass / volume
Density = 28.1 / 96.2
Density of object = 0.292 g/mL
Thus the density of the object is 0.292 g/mL
It is 20 because then you will put 30 inside of 20milimeeter and put 70 years into the other pint and put it learnt into the cup