Answer:
the other stars are much farther away from Earth than our sun
The answer is C. Because you need the sun to start your cycle which starts with water evaporation
Answer:
We need 12.26 grams H2SO4
Explanation:
Step 1: Data given
Volume of a H2SO4 solution = 500 mL = 0.500 L
Concentration of the H2SO4 solution = 0.250 M
Molar mass of H2SO4 = 98.08 g/mol
Step 2: Calculate moles H2SO4
Moles H2SO4 = concentration * volume
Moles H2SO4 = 0.250 M * 0.500 L
Moles H2SO4 = 0.125 moles
Step 3: Calculate mass of H2SO4
Mass of H2SO4 = moles * molar mass
Mass of H2SO4 = 0.125 moles * 98.08 g/mol
Mass of H2SO4 = 12.26 grams
We need 12.26 grams H2SO4
Explanation:
Expression for the
speed is as follows.

where,
= root mean square speed
k = Boltzmann constant
T = temperature
M = molecular mass
As the molecular weight of oxygen is 0.031 kg/mol and R = 8.314 J/mol K. Hence, we will calculate the value of
as follows.

= 
= 498.5 m/s
Hence,
for oxygen atom is 498.5 m/s.
For nitrogen atom, the molecular weight is 0.028 kg/mol. Hence, we will calculate its
speed as follows.

= 
= 524.5 m/s
Therefore,
speed for nitrogen is 524.5 m/s.
Answer:
19.07 g mol^-1
Explanation:
The computation of the molecular mass of the unknown gas is shown below:
As we know that

where,
Diffusion rate of unknown gas = 155 mL/s
CO_2 diffusion rate = 102 mL/s
CO_2 molar mass = 44 g mol^-1
Unknown gas molercualr mass = M_unknown
Now placing these values to the above formula

After solving this, the molecular mass of the unknown gas is
= 19.07 g mol^-1