Answer:
%age Yield = 85.36 %
Solution:
The Balance Chemical Reaction is as follow,
C₆H₁₂O + Acid Catalyst → C₆H₁₀ + Acid Catalyst + H₂O
According to Equation ,
100 g (1 mole) C₆H₁₂O produces = 82 g (1 moles) of C₆H₁₀
So,
4.0 g of C₆H₁₂O will produce = X g of C₆H₁₀
Solving for X,
X = (4.0 g × 82 g) ÷ 100 g
X = 3.28 g of C₆H₁₀ (Theoretical Yield)
As we know,
%age Yield = (Actual Yield ÷ Theoretical Yield) × 100
%age Yield = (2.8 g ÷ 3.28 g) × 100
%age Yield = 85.36 %
Nuclear chemistry is the subfield of chemistry dealing with radioactivity, nuclear processes, such as nuclear transmutation, and nuclear properties.
It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment (such as nuclear reactors) which are designed to perform nuclear processes. This includes the corrosion of surfaces and the behavior under conditions of both normal and abnormal operation (such as during an accident). An important area is the behavior of objects and materials after being placed into a nuclear wastestorage or disposal site.
It includes the study of the chemical effects resulting from the absorption of radiation within living animals, plants, and other materials. The radiation chemistry controls much of radiation biology as radiation has an effect on living things at the molecular scale, to explain it another way the radiation alters the biochemicals within an organism, the alteration of the biomolecules then changes the chemistry which occurs within the organism, this change in chemistry then can lead to a biological outcome. As a result, nuclear chemistry greatly assists the understanding of medical treatments (such as cancerradiotherapy) and has enabled these treatments to improve.
It includes the study of the production and use of radioactive sources for a range of processes. These include radiotherapy in medical applications; the use of radioactive tracers within industry, science and the environment; and the use of radiation to modify materials such as polymers.[1]
It also includes the study and use of nuclear processes in non-radioactive areas of human activity. For instance, nuclear magnetic resonance (NMR) spectroscopy is commonly used in synthetic organic chemistry and physical chemistry and for structural analysis in macromolecular chemistry.
Answer:
Depending upon the mass gathered, the next process formation varies:
Nuclear fusion can kick in leading to formation of star. The nuclei fuse to together and energy is liberated in the form of light and heat.
If sufficient mass is not gathered to start nuclear fusion reaction, gaseous planet forms like Jupiter.
In third case, even though sufficient mass is present (twice the mass of Jupiter) still no fusion reaction starts. Such bodies are known as failed stars or brown dwarfs.
Answer:
1. 389 kJ; 2. 7.5 µg; 3. 6.25 days
Explanation:
1. Energy required
The water is converted directly from a solid to a gas (sublimation).
They don't give us the enthalpy of sublimation, but

The equation for the process is then
Mᵣ: 18.02
46.69 kJ + H₂O(s) ⟶ H₂O(g)
m/g: 150
(a) Moles of water

(b) Heat removed
46.69 kJ will remove 1 mol of ice.

2. Mass of water vapour in the freezer
For this calculation, we can use the Ideal Gas Law — pV = nRT
(a) Moles of water
Data:

V = 5 L
T = (-80 + 273.15) K = 193.15 K
Calculation:

(b) Mass of water

3. Time for removal
You must remove 150 mL of water.
It takes 1 h to remove 1 mL of water.
