1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
3 years ago
5

Which of the following is the most likely end for a star that is small to average in size? A. blue main sequence B. red supergia

nt C. supernova D. white dwarf
Physics
2 answers:
likoan [24]3 years ago
7 0
"White dwarf" is the one among the following choices given in the question that is <span>the most likely end for a star that is small to average in size. The correct option among all the options that are given in the question is the last option or option "D". I hope that this is the answer that has actually helped you.</span>
stiv31 [10]3 years ago
3 0

Answer: D. White Dwarf

Explanation:

A star has life-cycle similar to any living specie. A star takes birth, goes through main sequence and dies in the end. The lifetime and the end of the star depend on the mass it holds.

A massive star  turns into red super-giant and goes supernova and ends up as either a neutron star or a black-hole.

On the other hand, a small to average star like our Sun will become a red giant and throw extra mass before ending up as a white dwarf.

The color on the main sequence (blue, yellow or red) depends on the temperature and age of the star. A young hot star is blue main sequence star. On the other hand, an old low temperature star towards the end of its life is a red star.

Hence, end for a star that is small to average in size is most likely to be a D. white dwarf.


You might be interested in
Optical astronomers need a clear, dark sky to collect good data. Explain why radio astronomers have no problem observing in the
gregori [183]

Answer:

In the clarification portion elsewhere here, the definition of the concern is mentioned.

Explanation:

So like optical telescopes capture light waves, introduce it to concentrate, enhance it, as well as make it usable through different instruments via study, so radio telescopes accumulate weak signal light waves, introduce that one to focus, enhance it, as well as make this information available during research. To research naturally produced radio illumination from stars, galaxies, dark matter, as well as other natural phenomena, we utilize telescopes.

Optical telescopes detect space-borne visible light. There are some drawbacks of optical telescopes mostly on the surface:

  • Mostly at night would they have been seen.
  • Unless the weather gets cloudy, bad, or gloomy, they shouldn't be seen.

Although radio telescopes monitor space-coming radio waves. Those other telescopes, when they are already typically very massive as well as costly, have such an improvement surrounded by optical telescopes. They should be included in poor weather and, when they travel through the surrounding air, the radio waves aren't obscured by clouds. Throughout the afternoon and also some at night, radio telescopes are sometimes used.

3 0
2 years ago
A storm is moving at 15 km/hr what to do to determine its velocity
WINSTONCH [101]
Check the current weather map for 2 different times, and see where the center of the storm is. That tells you what direction it's moving. With its speed and direction, you have its velocity.
6 0
3 years ago
What if the height is 85m, then how long long does it stay in the air?
wolverine [178]

Explanation:

hamburger cheesecake

6 0
3 years ago
A ray in glass arrives at the glass-water interface at an angle of 48° with the normal. The refracted ray, in water, makes a 72°
dimaraw [331]

Answer:

50.4°

Explanation:

Snell's law states:

n₁ sin θ₁ = n₂ sin θ₂

where n is the index of refraction and θ is the angle of incidence (relative to the normal).

When θ₁ = 48°:

n sin 48° = 1.33 sin 72°

n = 1.702

When θ₁ = 37°:

1.702 sin 37° = 1.33 sin θ

θ = 50.4°

3 0
3 years ago
An irregular object of mass 3 kg rotates about an axis, about which it has a radius of gyration of 0.2 m, with an angular accele
Artemon [7]

Answer:

0.06 Nm

Explanation:

mass of object, m = 3 kg

radius of gyration, k = 0.2 m

angular acceleration, α = 0.5 rad/s^2

Moment of inertia of the object

I = mK^{2}

I = 3 x 0.2 x 0.2 = 0.12 kg m^2

The relaton between the torque and teh moment off inertia is

τ = I α

Wheree, τ is torque and α be the angular acceleration and I be the moemnt of inertia

τ = 0.12 x 0.5 = 0.06 Nm

6 0
3 years ago
Other questions:
  • During aerobic activity, if your heart rate is lower than the lower limit, you are ___________________.
    11·1 answer
  • Which law says that the induced voltage is directly proportional to the magnetic flux?
    9·2 answers
  • Sarah is sitting at the top of the slide in the school's playground. Which of the following changes will increase Sarah's kineti
    9·1 answer
  • Alguien sepa como hacer éstos
    6·1 answer
  • 35 POINTSS!!! PLSSSS HELLPPP!!!
    13·1 answer
  • Cara is building a model of the solar system, which includes the Sun. She plans to include a written description to provide deta
    8·1 answer
  • On top of a 3 m tall shelf sits a lonely 4.5 kg toy snake. How much GPE does this snake have if the shelf is on Earth? (g = 9.8
    10·1 answer
  • Which equation describes the line containing the points (-2, 3) and (1, 2)​
    11·1 answer
  • Set local ground level to 700 ft, and record the inches of mercury.
    12·1 answer
  • A camper walks away from camp. He walks 23.72m north, then 39.25m south and
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!