Answer:
In the clarification portion elsewhere here, the definition of the concern is mentioned.
Explanation:
So like optical telescopes capture light waves, introduce it to concentrate, enhance it, as well as make it usable through different instruments via study, so radio telescopes accumulate weak signal light waves, introduce that one to focus, enhance it, as well as make this information available during research. To research naturally produced radio illumination from stars, galaxies, dark matter, as well as other natural phenomena, we utilize telescopes.
Optical telescopes detect space-borne visible light. There are some drawbacks of optical telescopes mostly on the surface:
- Mostly at night would they have been seen.
- Unless the weather gets cloudy, bad, or gloomy, they shouldn't be seen.
Although radio telescopes monitor space-coming radio waves. Those other telescopes, when they are already typically very massive as well as costly, have such an improvement surrounded by optical telescopes. They should be included in poor weather and, when they travel through the surrounding air, the radio waves aren't obscured by clouds. Throughout the afternoon and also some at night, radio telescopes are sometimes used.
Check the current weather map for 2 different times, and see where the center of the storm is. That tells you what direction it's moving. With its speed and direction, you have its velocity.
Answer:
50.4°
Explanation:
Snell's law states:
n₁ sin θ₁ = n₂ sin θ₂
where n is the index of refraction and θ is the angle of incidence (relative to the normal).
When θ₁ = 48°:
n sin 48° = 1.33 sin 72°
n = 1.702
When θ₁ = 37°:
1.702 sin 37° = 1.33 sin θ
θ = 50.4°
Answer:
0.06 Nm
Explanation:
mass of object, m = 3 kg
radius of gyration, k = 0.2 m
angular acceleration, α = 0.5 rad/s^2
Moment of inertia of the object

I = 3 x 0.2 x 0.2 = 0.12 kg m^2
The relaton between the torque and teh moment off inertia is
τ = I α
Wheree, τ is torque and α be the angular acceleration and I be the moemnt of inertia
τ = 0.12 x 0.5 = 0.06 Nm