1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka2103 [35]
2 years ago
11

Two dogs are pulling on a chew toy. One dog pulls the chew toy with 64 N [E] and

Physics
1 answer:
PIT_PIT [208]2 years ago
3 0

Answer:

Eastward, at 11 m/s^2

Explanation:

64N-31N=unbalanced force of 33N

F=ma

33N=(3kg)a

a=11m/s^2 to the East

You might be interested in
Why does it takes the outer planets so long to orbit the Sun? Try to come up with two reasons.
tensa zangetsu [6.8K]

well they are normally bigger than the inner planets, and they also have a bigger distance to go


7 0
3 years ago
The 5-kg block A has an initial speed of 5 m/s as it slides down the smooth ramp, after which it collides with the stationary bl
Akimi4 [234]

Answer:

The coupled velocity of both the blocks is 1.92 m/s.

Explanation:

Given that,

Mass of block A, m_1=5\ kg

Initial speed of block A, u_1=5\ m/s

Mass of block B, m_2=8\ kg

Initial speed of block B, u_2=0

It is mentioned that if the two blocks couple together after collision. We need to find the common velocity immediately after collision. We know that due to coupling, it becomes the case of inelastic collision. Using the conservation of linear momentum. Let V is the coupled velocity of both the blocks. So,

m_1u_1+m_2u_2=(m_1+m_2)V\\\\V=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}\\\\V=\dfrac{5\times 5+0}{(5+8)}\\\\V=1.92\ m/s

So, the coupled velocity of both the blocks is 1.92 m/s. Hence, this is the required solution.

8 0
3 years ago
A flask that weighs 345.8 g is filled with 225 mL of carbon tetrachloride. The weight of the flask and carbon tetrachloride is f
KatRina [158]

Answer:

<em>Well, I think the best answer will be is </em><em>1.59 g/mL Good Luck!</em>

6 0
3 years ago
One of your delivery trucks traveled 1,200 miles on 55 gallons of gas. How many miles per gallon did the truck get? (Round off y
Aleksandr-060686 [28]
The word "Per" means divide

"miles per gallon" is the same as "miles / gallon"

The truck went 1,200 miles
on 55 gallons

1,200 ÷ 55 = 21.81
7 0
3 years ago
Read 2 more answers
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
2 years ago
Other questions:
  • If a solution is forced to dissolve more solute than it normally can dissolve, the solution is
    12·1 answer
  • You want to create a new warming appliance that is safe. Which type of electromagnetic wave would be most useful to investigate?
    14·2 answers
  • A boy and a girl are riding on a merry-go-round which is turning at a constant rate. The boy is near the outer edge, and the gir
    12·1 answer
  • The atom in the diagram has neutral charge. How many protons does it have
    14·1 answer
  • During an off-day, Mike Trout, Shohei Ohtani, and Albert Pujols and having a pool party. They are tugging on a ring for some odd
    6·1 answer
  • Which law states that the pressure and absolute temperature of a fixed quantity of gas are directly proportional under constant
    14·2 answers
  • A charged particle having mass 6.64 x 10-27 kg (that of a helium atom) moving at 8.70 x 105 m/s perpendicular to a 1.30-T magnet
    14·1 answer
  • Please refer to the picture
    14·1 answer
  • WILL MARK BRAIN<br> A=154<br> B=145<br> C=26<br> D=206
    12·1 answer
  • How can the pilot determine, for an ILS runway equipped with MALSR, that there may be a penetration of the obstacle identificati
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!