Answer:
From the previous explanation Student No. 1 has the correct explanation
Explanation:
When the fluorescent lamp emits a light it has the shape of its emission spectrum, this light collides with the atoms of Nitrogen and excites it, so these wavelengths disappear, lacking in the spectrum seen by the observed, for which we would see an absorption spectrum
The nitrogen that was exited after a short time is given away in its emission lines, in general there are many lines, so the excitation energy is divided between the different emission lines, which must be weak
From the previous explanation Student No. 1 has the correct explanation
The pipeline will run 1,100 miles, from the Sangachal terminal near Baku, the capital of Azerbaijan, through Georgia and to the Turkish Mediterranean port of Ceyhan.
- In order to achieve the desired resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with the 20 Ohms resistors.
- In order to get a 35 Ohms resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with two 20 Ohms resistors that are connected in parallel.
<h3>How to achieve the desired resistance under these circumstances?</h3>
In order to achieve the desired resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with the 20 Ohms resistors.
Mathematically, the total equivalence resistance of two resistors that are connected in parallel is given by:
1/Rt = 1/R₁ + 1/R₂
1/Rt = 1/50 + 1/50
1/Rt = 2/50
1/Rt = 1/25
Rt = 25 Ohms.
Next, we would connect this 25 Ohms resistor in series with the 20 Ohms resistor:
R₃ = 20 + Rt
R₃ = 20 + 25
R₃ = 45 Ohms.
<h3>Part B.</h3>
In order to get a 35 Ohms resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with two 20 Ohms resistors that are connected in parallel.
1/Rt = 1/R₁ + 1/R₂
1/Rt = 1/50 + 1/50
1/Rt = 2/50
1/Rt = 1/25
Rt = 25 Ohms.
1/R't = 1/R₁ + 1/R₂
1/R't = 1/20 + 1/20
1/R't = 2/20
1/R't = 1/10
R't = 10 Ohms.
Next, we would connect the 25 Ohms resistor in series with the 10 Ohms resistor:
R₃ = 10 + Rt
R₃ = 10 + 25
R₃ = 35 Ohms.
Read more on resistors in parallel here: brainly.com/question/15121871
#SPJ4
Complete Question:
You need a 45-ω resistor, but the stockroom has only 20-ω and 50-ω resistors.
(a) How can the desired resistance be achieved under these circumstances?
(b) What can you do if you need a 35-ω resistor?
Answer: 8.242 × 10 exp -8 N
Explanation: F = G *m* M/r^2
r = √(13-5)^² + (51-15)^² + (0-0)²
r = 8; the distance between the masses
G =6.673 × 10 -¹¹ Nm²kg-²
F = gravitational force of attraction of m(51kg) on M {1550kg)
Answer:
The matter has mass and takes up space. The amount of space that matter takes up is called its : density