1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
4 years ago
11

A baseball is launched horizontally from a height of 1.8 m. The baseball travels 0.5 m before hitting the ground.

Physics
1 answer:
Illusion [34]4 years ago
5 0

Answer:

The velocity of the baseball, rounded to the nearest hundredth, is 0.82 m/s.

Explanation:

We will use equation of motion:

h=ut+\frac{1}{2}gt^2

h is the initial height

u = 0 = Initial vertical velocity

g = 9.8 m/s^2 = Acceleration of gravity

t = Time

We are given that A baseball is launched horizontally from a height of 1.8 m.

So, Substitute h = 1.8 m

1.8=(0)t+\frac{1}{2}(9.8) t^2\\3.6=(9.8) t^2\\\frac{3.6}{9.8}=t^2\\\sqrt{\frac{3.6}{9.8}}=t\\0.61=t

We are given that The baseball travels 0.5 m before hitting the ground.

Now Distance = 0.5 m

Time = 0.61 sec

To Find Speed

Speed = \frac{Distance}{Time}\\Speed = \frac{0.5}{0.61}\\Speed=0.819

So, Speed = 0.82 m/s

Hence The velocity of the baseball, rounded to the nearest hundredth, is 0.82 m/s.

You might be interested in
What are four types of pathogens and what type of disease or sickness do they cause?
Zanzabum

Bacteria( cholera)

Virus( AIDS)

Fungi(athlete's foot)

Protist( malaria)

Pleasssssssse mark me as brainliest

7 0
3 years ago
FIGURE 2 shows a 1.5 kg block is hung by a light string which is wound around a smooth pulley of radius 20 cm. The moment of ine
Sindrei [870]

Answer:

At t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

Explanation:

First, we consider all the forces acting on the pulley.

There is only one force acting on the pulley, and that is due to the 1.5 kg mass attached to it.

Therefore, the torque on the pulley is

\tau=Fd=mg\cdot R

where m is the mass of the block, g is the acceleration due to gravity, and R is the radius of the pulley.

Now we also know that the torque is related to angular acceleration α by

\tau=I\alpha

therefore, equating this to the above equation gives

mg\cdot R=I\alpha

solving for alpha gives

\alpha=\frac{mgR}{I}

Now putting in m = 1.5 kg, g = 9.8 m/s^2, R = 20 cm = 0.20 m, and I = 2 kg m^2 gives

\alpha=\frac{1.5\cdot9.8\cdot0.20}{2}\boxed{\alpha=1.47s^{-2}}

Now that we have the value of the angular acceleration in hand, we can use the kinematics equations for the rotational motion to find the angular velocity and the number of revolutions at t = 4.2 s.

The first kinematic equation we use is

\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2

since the pulley starts from rest ω0 = 0 and theta = 0; therefore, we have

\theta=\frac{1}{2}\alpha t^2

Therefore, ar t = 4.2 s, the above gives

\theta=\frac{1}{2}(1.47)(4.2)^2

\boxed{\theta=12.97}

So how many revolutions is this?

To find out we just divide by 2 pi:

\#\text{rev}=\frac{\theta}{2\pi}=\frac{12.97}{2\pi}\boxed{\#\text{rev}=2.06}

Or about 2 revolutions.

Now to find the angular velocity at t = 4.2 s, we use another rotational kinematics equation:

\omega^2=w^2_0+2\alpha(\Delta\theta)_{}

Since the pulley starts from rest, ω0 = 0. The change in angle Δθ we calculated above is 12.97. The value of alpha we already know to be 1.47; therefore, the above becomes:

\omega^2=0+2(1.47)(12.97)w^2=38.12\boxed{\omega=6.17.}

Hence, the angular velocity at t = 4.2 w is 6. 17 rad / s

To summerise:

at t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

3 0
1 year ago
The wavelength of green light is about the size of an atom. (T/F)
Snowcat [4.5K]

Explanation:

The wavelength of green light is about 500 nanometers, or two thousandths of a millimeter. The typical wavelength of a microwave oven is about 12 centimeters, which is larger than a baseball.

5 0
4 years ago
If you push a crate across a factory floor at constant speed in a constant direction, what is the magnitude of the force of fric
poizon [28]

Answer:

The magnitude of the force of friction equals the magnitude of my push

Explanation:

Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.

Let F = push and f = frictional force and f' = net force

F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0

So, F - f = 0

Thus, F = f

So, the magnitude of the force of friction equals the magnitude of my push.

3 0
3 years ago
A string is wound tightly around a fixed pulley having a radius of 5.0 cm. as the string is pulled, the pulley rotates without a
lubasha [3.4K]
The angular speed can be solve using the formula:
w = v / r
where w is the angular speed
v is the linear velocity
r is the radius of the object

w = ( 5 m / s ) / ( 5 cm ) ( 1 m / 100 cm )
w = 100 per second
8 0
3 years ago
Read 2 more answers
Other questions:
  • An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
    13·1 answer
  • Pls look at the photo above, thanks
    8·1 answer
  • 1) Arrange the following spectral regions in order of increasing energy: infrared, microwave, ultraviolet, visible.
    8·1 answer
  • Which is the transfer of thermal energy through the motion of particles caused by temperature differences? Question 20 options:
    11·1 answer
  • A metal spoon becomes hot after being left in a pan of boiling water. this is an example of _____. conduction reflection radiati
    10·2 answers
  • According to the videos seen in Modules 8, please write a short paragraph answering the following questions: a. What are some ex
    5·1 answer
  • Given a 9.7 pF air-filled capacitor, you are asked to convert it to a capacitor that can store up to 7.7 µJ with a maximum poten
    8·1 answer
  • PLEASE SOMEONE HELP ME PLEASE
    14·1 answer
  • A plane flying horizontally at an altitude of 1 mi and a speed of 480 mi/h passes directly over a radar station. Find the rate a
    5·1 answer
  • What are the properties of glass in relation to microscopy?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!