Answer:Increase by a factor of 25
Explanation:
We know that magnetic force is proportional to
where r is the distance between them
Thus
Where
=magnetic field
If distance is reduced by a factor of
then force must increase by a factor of
because
so
Answer:
a)The electric Field will be zero at the point between the sheets
b)
c)
Explanation:
Let
be the surface charge density of the of the non conducting parallel sheet.Let consider a Gaussian surface in the form of of cylinder such that its cross-sectional is A . Then there will be flux only due to cross sectional area as the curved sectional is perpendicular to the the electric field so the Electric Flux due to it is zero.
Now using Gauss law we have, E be the electric Field at the distance r from the sheet then

The Field will be away from the sheet and perpendicular to it.
a) The Electric Field between them

b)The Electric Field to the right of the sheets

c)The Electric Field to the left of the sheets

The resultant vector is 5.2 cm at a direction of 12⁰ west of north.
<h3>
Resultant of the two vectors</h3>
The resultant of the two vectors is calculated as follows;
R = a² + b² - 2ab cos(θ)
where;
- θ is the angle between the two vectors = 45° + (90 - 57) = 78⁰
- a is the first vector
- b is the second vector
R² = (3.7)² + (4.5)² - (2 x 3.7 x 4.5) cos(78)
R² = 27.02
R = 5.2 cm
<h3>Direction of the vector</h3>
θ = 90 - 78⁰
θ = 12⁰
Thus, the resultant vector is 5.2 cm at a direction of 12⁰ west of north.
Learn more about resultant vector here: brainly.com/question/28047791
#SPJ1
Equatorial currents are primarily westward. This is because the dominant current in the northern hemisphere has a clockwise direction, while the southern hemisphere has a counterclockwise direction. When these two currents meet at the equator, a common westward current exists.