1°/ . 2 Al + 6 HCl → 2 AlCl3 + 3 H2
<span>k1 = n(Al) / 2 = 4,5 / 2 = 2,25 </span>
<span>k2 = n(HCl) / 6 = 11,5 / 6= 1,92 </span>
<span>k2 < k1 ==> HCl is the limiting reactant </span>
<span>6 mol of HCl ---> 2 mol of H2 </span>
<span>11,5 mol of HCl ---> 3,83 mol of H2 </span>
Answer:
[OH-] = 1.0 x 10-10 M
Explanation:
The acidity of a solution can be determined directly from the concentration of the hydrogen ions and indirectly from the concentrations of the hydroxide ions.
Generally, for a neutral solution we have;
[H3O+] = [OH-] = 1.0 x 10-7 M
For an acidic solution;
[H3O+] > 1.0 x 10-7 M
[OH-] < 1.0 x 10-7 M
Comparing the options the correct option is;
[OH-] = 1.0 x 10-10 M
Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Answer:
Newton's second law of motion
F = ma
Answer:
C) H2S
Explanation:
In chemistry, the dissolution of one substance in another is dependent on the magnitude of intermolecular interaction between the two substances. Hence, if two substances do not interact in one way or the other, then one can not dissolve the other.
Let us consider the fact that NH3 is a polar molecule and it is a general principle that like dissolves like. Hence, only H2S which is also a polar molecule can effectively interact with NH3 due to dipole-dipole interaction between the two molecules.
Also, ammonia reacts with hydrogen sulphide as follows;
2NH3 + H2S → (NH4)2S
Hence H2S is more likely to dissolve in NH3.