Answer:
Please, see attached two figures:
- The first figure shows the solutility curves for several soluts in water, which is needed to answer the question.
- The second figure shows the reading of the solutiblity of NH₄Cl at a temperature of 60°C.
Explanation:
The red arrow on the second attachement shows how you must go vertically from the temperature of 60ºC on the horizontal axis, up to intersecting curve for the <em>solubility</em> of <em>NH₄Cl.</em>
From there, you must move horizontally to the left (green arrow) to reach the vertical axis and read the solubility: the reading is about in the middle of the marks for 50 and 60 grams of solute per 100 grams of water: that is 55 grams of grams of solute per 100 grams of water.
Assuming density 1.0 g/mol for water, 10 mL of water is:
Thus, the solutibily is:

Answer:The change in concentration of a reactant or product per unit time
Explanation:
I believe it would be a compound.
The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>