Answer:
Standard form: (x+3)^2=1/2(y+3)
f(1) = 29
f(-1) = 5
Explanation:
The standard form of a parabola with a directrix that is horizontal is
(x-h)=4(P)(y-k)
Using the vertex form, find the vertex, foci, and the distance from the vertex to the focus or directrix.
It's easier to use the vertex form to plug in values for x.
f(1) = 2((1)+3)^2-3
f(1) = 29
f(-1) = 2((-1)+3)^2-3
f(-1) = 5
Answer:
Part A
Kp = 3.4 x 10⁴
Part B
Kp = 2.4 x 10⁻¹⁴
Part C
Kp = 1.2 x 10⁹
Explanation:
2PH₃(g) + As₂(g) ⇌ 2 AsH₃(g) + P₂(g) Kp = 2.9 x 10⁻⁵
Kp = [AsH₃]²[P₂]/[PH₃]²[As] = 2.9 x 10⁻⁵
Part A
it is the inverse of the equilibrium given
Kp(A) = 1/ Kp = 1 / 2.9 x 10⁻⁵ = 3.4 x 10⁴
Part B
Is the equilibrium where the coefficients have been multiplied by 3,
Kp(B) = ( Kp )³ = ( 2.9 x 10⁻⁵ )³ = 2.4 x 10⁻¹⁴
Part C
This is the reverse equilibrium multipled by 2.
Kp(C) = ( 1/Kp)² = ( 1/ 2.9 x 10⁻⁵ )² = 1.2 x 10⁹
If the bonds are held together tightly, as an ionic bond or even a covalent bond, there will need to be a strong force to separate those bonds. This would by why their would be a high melting point. Another reason would be re-activity. <span />
answer: -230kJ
When in doubt, use the google conversations! :)
Answer:
Bromine mollecules are held together by van der waals forces while a water molecule constitutes both van der waals forces and hydrogen bomnding
Explanation:
This makes the water molecule recquire more heat energy to break the bond thus a higher boiling point while bromine structure requires just litttle heat energy