The bond dissociation energy of the Cl - Cl bond is -958 kJ mol^-1.
<h3>What is the dissociation enthalpy?</h3>
Given that;
H-H bond energy = 435 kJ mol^-1
H-Cl bond energy = 431 kJ mol^-1
ΔHfO of HCL(g) = -92kJ mol^-1
Bond dissociation enthalpy of the Cl-Cl bond = x
-92 = 435 + 431 + x
x = -92 - (435 + 431)
x = -958 kJ mol^-1
Learn More about dissociation enthalpy:brainly.com/question/9998007?
#SPJ1
Answer:
7.5 L of the 10% and 22.5 L of the 30% acid solution, she should mix.
Explanation:
Let the volume of 10% acid solution used to make the mixture = x L
So, the volume of 30% acid solution used to make the mixture = y L
Total volume of the mixture = <u>x + y = 30 L .................. (1)
</u>
For 10% acid solution:
C₁ = 10% , V₁ = x L
For 30% acid solution :
C₂ = 30% , V₂ = y L
For the resultant solution of sulfuric acid:
C₃ = 25% , V₃ = 30 L
Using
C₁V₁ + C₂V₂ = C₃V₃
10×x + 30×y = 25×30
So,
<u>x + 3y = 75 .................. (2)
</u>
Solving 1 and 2 we get,
<u>x = 7.5 L
</u>
<u>y = 22.5 L</u>
The mass of a NaCl solution that is required to prepare 0.40 L of a 0.75 M solution is 17.55g. Details about mass can be found below.
<h3>How to calculate mass?</h3>
The mass of a substance can be calculated by multiplying the number of moles by its molar mass.
However, the number of moles of a solution must be initially calculated by using the following formula:
molarity = no of moles ÷ volume
no of moles = 0.75 × 0.40
no of moles = 0.3 moles
mass of NaCl = 0.3 × 58.5 = 17.55g
Therefore, the mass of a NaCl solution that is required to prepare 0.40 L of a 0.75 M solution is 17.55g.
Learn more about mass at: brainly.com/question/19694949
#SPJ1
Answer:
What happens when electrons in atoms absorb or release energy? When electrons absorb or release energy, their electrons can move to higher or lower energy levels. These electrons lose energy by emitting light when they return to lower energy levels.
Explanation:
i really hope this helps