The kinetic energy K = 0.5 * m * v² must be equal to the potential energy U = m * g * h.
m mass
v velocity
h height
g = 9.81m/s²
The mass m cancels out:
0.5 * v² = g * h
Solve for height h and transform to distance traveled.
(sin (4°) = height / distance)
The problem seems to be incomplete because there is no question. However, from the problem description, the logical question is to find he acceleration needed by the jet to land on the airplane carrier. The working equation would be:
2ad = v₂² - v₁²
Since the jet stops, v₂ = 0. Substituting the values:
2(a)(95 m) = 0² - [(240 km/h)(1000 m/1 km)(1h/3600 s)]²
Solving for a,
<em>a = -23.39 m/s² (the negative sign indicates that the jet is decelerating)</em>