The balanced chemical equation for the above reaction is as follows;
2LiOH + H₂SO₄ ---> Li₂SO₄ + 2H₂O
stoichiometry of base to acid is 2:1
Number of OH⁻ moles reacted = number of H⁺ moles reacted at neutralisation
Number of LiOH moles reacted = 0.400 M / 1000 mL/L x 20.0 mL = 0.008 mol
number of H₂SO₄ moles reacted - 0.008 mol /2 = 0.004 mol
Number of H₂SO₄ moles in 1 L - 0.500 M
This means that 0.500 mol in 1 L solution
Therefore 0.004 mol in - 1/0.500 x 0.004 = 0.008 L
therefore volume of acid required = 8 mL
Answer:
8.33 atm
Explanation:
Xe is 5 out of (4+5) or 5 / 9 ths of the gas present
5/9 * 15 atm = 8.33 atm
Answer:
The most common example is the molar volume of a gas at STP (Standard Temperature and Pressure), which is equal to 22.4 L for 1 mole of any ideal gas at a temperature equal to 273.15 K and a pressure equal to 1.00 atm.If an ideal gas at a constant temperature is initially at a pressure of 3.8 atm and is then allowed to expand to a volume of 5.6 L and a pressure of 2.1 - 18914… ... of 5.6 L and a pressure of 2.1 atm, what is the initial volume of the gas? ... An ideal gas is at a pressure of 1.4 atm and has a volume of 3 L.
Explanation:
I hope I help :)
Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.