Answer:
Tungsten is used for this experiment
Explanation:
This is a Thermal - equilibrium situation. we can use the equation.
Loss of Heat of the Metal = Gain of Heat by the Water

Q = mΔT
Q = heat
m = mass
ΔT = T₂ - T₁
T₂ = final temperature
T₁ = Initial temperature
Cp = Specific heat capacity
<u>Metal</u>
m = 83.8 g
T₂ = 50⁰C
T₁ = 600⁰C
Cp = 
<u>Water</u>
m = 75 g
T₂ = 50⁰C
T₁ = 30⁰C
Cp = 4.184 j.g⁻¹.⁰c⁻¹

⇒ - 83.8 x
x (50 - 600) = 75 x 4.184 x (50 - 30)
⇒
=
j.g⁻¹.⁰c⁻¹
We know specific heat capacity of Tungsten = 0.134 j.g⁻¹.⁰c⁻¹
So metal Tungsten used in this experiment
Answer:
<h2>ignore your body being cold</h2>
Hope it helps
From the statement of Hess' law, the enthalpy of the reaction A---> C is +90 kJ
<h3>What is Hess' law?</h3>
Hess' law of constant heat summation states that for a multistep reaction, the standard enthalpy of reaction is always constant and is independent of the pathway or intermediate routes taken.
From Hess' law, the enthalpy change for the reaction A ----> C is calculated as follows:
A---> C = A ---> B + B ---> C
ΔH of A---> C = 30 kJ + 60 kJ
ΔH = 90 kJ
Therefore, the enthalpy of the reaction A---> C is +90 kJ
The above reaction A---> C can be shown in the enthalpy diagram below:
A -------------------> C (ΔH = +90 kJ)
\ /
\ / (ΔH = +60 kJ)
(ΔH = +30 J) \ /
> B
Learn more about enthalpy and Hess law at: brainly.com/question/9328637