Answer:
Reagents: 1) 2) ,
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane () to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of on the to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
The last intermediate in citric acid cycle is Oxaloacetic acid.
<h3>What is Citric Acid Cycle?</h3>
Organic molecule HOC(CO2H)(CH2CO2H)2 is the chemical formula for citric acid. It is a weak organic acid that is colorless. Citrus fruits naturally contain it. It is a biochemical intermediary in the citric acid cycle, which is a component of all aerobic organisms' metabolism.
Every year, more than two million tons of citric acid are produced. It is frequently used as a flavoring, an acidifier, and a chelating agent.
Citrates, which include salts, esters, and the polyatomic anion present in solution, are derivatives of citric acid. Trisodium citrate is an example of the former; triethyl citrate is an example of an ester.
Learn more about citric acid with the help of the given link:
brainly.com/question/15582668
#SPJ4
Answer:
phosphodiester bond
Explanation:
<em>Phosphodiester linkage/bond is found in deoxyribonucleic and ribonucleic acids. It is formed from a reaction involving the elimination of water from a reaction involving the hydroxyl groups of two different 5-carbon (pentose) sugars and a phosphate group.</em>
The elimination of water, also known as condensation reaction occur twice, resulting in the formation of two ester bonds which then bind the phosphate group to the pentose sugars to become a phosphodiester bond.
The bond links the 3'-hydroxyl group of one of the pentose sugars and the 5'-hydroxyl group of the other pentose sugar in the nucleotides that make up nucleic acids.
Answer: The correct formula for phosphorous pentachloride is because a subscript 5 indicates five chlorine (Cl) atoms.
Explanation: For the given molecule, phosphorous pentachloride, there are 2 atoms present which are phosphorous and chlorine atoms.
Number of phosphorous atoms = 1
Number of chlorine atoms = 5
So, the correct formula for phosphorous pentachloride will be because the subscript 5 represents the 5 chlorine atoms.
Part A
75.0 mL of 0.10 M HF; 55.0 mL of 0.15 M NaF
This combination will form a buffer.
Explanation
Here, weak acid HF and its conjugate base F- is available in the solution
Part B
150.0 mL of 0.10 M HF; 135.0 mL of 0.175 M HCl
This combination cannot form a buffer.
Explanation
Here, moles of HF = 0.15 x 0.1 = 0.015 moles
Moles of HCl = 0.135 x 0.175 = 0.023
Since HCl is a strong acid and the number of HCl is higher than HF. This prevents the dissociation of HF and the conjugate base F- will not be available in the solution
Part C
165.0 mL of 0.10 M HF; 135.0 mL of 0.050 M KOH
This combination will form a buffer.
Explanation
Moles of HF = 0.165 x 0.1 = 0.0165 moles
Moles of KOH = 0.135 x 0.05 = 0.00675 moles
Moles of KOH is not sufficient for the complete neutralization of HF. Thus weak acid HF and its conjugate base F- is available in the solution and form a buffer
Part D
125.0 mL of 0.15 M CH3NH2; 120.0 mL of 0.25 M CH3NH3Cl
This combination will form a buffer
Explanation
Here, weak acid CH3NH3+ and its conjugate base CH3NH2 is available in the solution and form a buffer
Part E
105.0 mL of 0.15 M CH3NH2; 95.0 mL of 0.10 M HCl
This combination will form a buffer
Explanation
Moles of CH3NH2 = 0.105 x 0.15 = 0.01575 moles
Moles of HCl = 0.095 x 0.1 = 0.0095 moles
Thus the HCl completely reacts with CH3NH2 and converts a part of the CH3NH2 to CH3NH3+. This results weak acid CH3NH3+ and its conjugate base CH3NH2 is in the solution and form a buffer