Answer:

Explanation:
The instantaneous velocity of a point mass that executes a simple harmonic movement is given by:

Where:

Express the amplitude in meters:

The angular frequency can be found using the next equation:

Using the data provided:

At the equilibrium position:


The answer is 3. Photosynthesis removes carbon dioxide while respiration puts back carbon dioxide
Answer:
R (120) = 940Ω
Explanation:
The variation in resistance with temperature is linear in metals
ΔR (T) = R₀ α ΔT
where α is the coefficient of variation of resistance with temperature, in this case α = -0,0005 / ºC
let's calculate
ΔR = 1000 (-0,0005) (120-0)
ΔR = -60
Ω
ΔR = R (120) + R (0) = -60
R (120) = -60 + R (0)
R (120) = -60 + 1000
R (120) = 940Ω
Answer : The change in momentum of an object is equal to the impulse that acts on it.
Explanation :
Change in momentum : The change in momentum of an object is the product of the mass and the change in velocity of an object.
The formula of change in momentum is,

Impulse : An impulse of an object is the product of the force applied on an object and the change in time. Impulse is also equivalent to the change in momentum of an object.

Proof :

Hence, the change in momentum of an object is equal to the impulse that acts on it.