Answer:
a = 2.22 [m/s^2]
Explanation:
First we have to convert from kilometers per hour to meters per second
![40 [\frac{km}{h}]*[\frac{1h}{3600s}]*[\frac{1000m}{1km}] = 11.11 [m/s]](https://tex.z-dn.net/?f=40%20%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5B%5Cfrac%7B1h%7D%7B3600s%7D%5D%2A%5B%5Cfrac%7B1000m%7D%7B1km%7D%5D%20%3D%2011.11%20%5Bm%2Fs%5D)
We have to use the following kinematics equation:

where:
Vf = final velocity = 11.11 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 5 [s]
The initial speed is taken as zero, as the car starts from zero.
11.11 = 0 + (a*5)
a = 2.22 [m/s^2]
Explanation:
Given that,
Force, 
Position of the particle, 
(a) The toque on a particle about the origin is given by :


Taking the cross product of above two vectors, we get the value of torque as :

(b) Let
is the angle between r and F. The angle between two vectors is given by :




Answer:
hot humid with lots of rain.
Explanation:
ocean currents act as conveyer belts of warm and cold water sending heat to the polar regions and helping the tropical areas cool off, thus influencing both weather and climate. the tropics are particularly rainy because heat absorption , and thus ocean evaporation, is highest.
Answer:
d₁ = 0.29 in
d₂ = 0.505 in
Explanation:
Given:
T = 1500 lbf in
L = 10 in
x = 0.5 L = 5 in

First case: T = T₁ + T₂
T₂ = T - T₁ = 1500 - 750 = 750 lbf in
If the shafts are in series:
θ = θ₁ + θ₂
θ = ((T₁ * L₁)/GJ) + ((T₂ * L₂)/GJ)
Second case: If d₁ ≠ d₂
θ = ((T₁ * L₁)/GJ₁) + ((T₂ * L₂)/GJ₂) = 0 (eq. 1)
t₁ = t₂
(eq. 2)
T₁ + T₂ = 1500 (eq. 3)
θ₁ first case = θ₁ second case
Replacing:

The same way to θ₂:

From equation 2, we have:
d₁ = 0.587 * d₂
From equation 3, we have:
d₂ = 0.505 in
d₁ = 0.29 in