HBr and HF are both monoprotic Arrhenius acids—that is, in aqueous solution, they dissociate and ionize to give hydrogen ions. A strong acid ionizes completely; a weak acid ionizes partially.
In this case, HBr, being a strong acid, would ionize completely in water to yield H+ and Br- ions. However, HF, being a weak acid, would ionize only to a limited extent: some of the HF molecules will ionize into H+ and F- ions, but most of the HF will remain undissociated.
pH is, by definition, a measurement of the concentration of hydrogen ions in solution (pH = -log[H+]). A higher concentration of hydrogen ions gives a lower pH, while a lower concentration of hydrogen ions gives a higher pH. At 25 °C, a pH of 7 indicates a neutral solution; a pH less than 7 indicates an acidic solution; and a pH greater than 7 indicates a basic solution.
If we have equal concentrations of HBr and HF, then the HBr solution will have a greater concentration of hydrogen ions in solution than the HF solution. Consequently, the pH of the HBr solution will be less than the pH of the HF solution.
Choice A is incorrect: Strong acids like HBr dissociate completely, not partially.
Choice B is incorrect: While the initial concentration of HBr and HF are the same, the H+ concentration in the HBr solution is greater. Since pH is a function of H+ concentration, the pH of the two solutions cannot be the same.
Choice C is correct: A greater H+ concentration gives a lower pH value. The HBr solution has the greater H+ concentration. Thus, the pH of the HBr solution would be less than that of the HF solution.
Choice D is incorrect for the reason why choice C is correct.
Metals are lustrous, malleable, ductile, good conductors of heat and electricity. Other properties include: State: Metals are solids at room temperature with the exception of mercury, which is liquid at room temperature
Answer:
Define a problem, form a hypothesis, gather experimental data, form a conclusion
Answer:
41 g
Explanation:
The equation of the reaction is;
Cr(NO3)3(aq)+Na3PO4(aq)=3NaNO3(s)+CrPO4(aq)
Number of moles of chromium nitrate = 37g/ 146.97 g/mol = 0.25 moles
1 mole of sodium phosphate reacts with 1 mole of chromium nitrate
x moles of sodium phosphate react as with 0.25 moles of chromium nitrate
x= 1 × 0.25/1
x= 0.25 moles
Mass of sodium phosphate = 0.25 moles × 163.94 g/mol
Mass of sodium phosphate = 41 g