Explanation:
Load (l) = 680N
Effort (E) = 500N
Length slope (l) = 12m
Height slope (h) = 8 m
Output = load * height
680 *8 = 5.44 *103 J
The Input = effort * length = 500 *12 = 6000J
the Mechanical advantage (M.A) = load effort= 600500=1.36
the Velocity ratio (V.R) =lh=128 = 1.5
the Efficiency =M.A100%V.R= 90.6%
Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?
Answer:
601000 N
Explanation:
Given that :
Acceleration due to gravity at lunar outpost = 1.6m/s²
Supported Weight of supplies = 1 * 10^5 N
Acceleration due to gravity on the earth surface = 9.8m/s²
Maximum weight of supplies as measured on EARTH :
Ratio of earth gravity to lunar post gravity:
(Earth gravity / Lunar post gravity) ;
(9.8 / 1.63) = 6.01
Hence, maximum weight of supplies as measured on EARTH should be :
6.01 * (1 × 10^5)
6.01 × 10^5
= 601000 N
The time taken by traveler to cover the distance is,

Substitute the known values,

Therefore, the time taken by traveler to cover the distance is 89.3 s.
Explanation:
225=m (2.20m/s2 which give m=16kg I used newtons second law to fins the required average force
Answer:
The net emissions rate of sulfur is 1861 lb/hr
Explanation:
Given that:
The power or the power plant = 750 MWe
Since the power plant with a thermal efficiency of 42% (i.e. 0.42) burns 9000 Btu/lb coal, Then the energy released per one lb of the coal can be computed as:

= 3988126.8 J
= 3.99 MJ
Also, The mass of the burned coal per sec can be calculated by dividing the molecular weight of the power plant by the energy released per one lb.
i.e.
The mass of the coal that is burned per sec 
The mass of the coal that is burned per sec = 187.97 lb/s
The mass of sulfur burned 
= 2.067 lb/s
To hour; we have:
= 7444 lb/hr
However, If a scrubber with 75% removal efficiency is utilized,
Then; the net emissions rate of sulfur is (1 - 0.75) × 7444 lb/hr
= 0.25 × 7444 lb/hr
= 1861 lb/hr
Hence, the net emissions rate of sulfur is 1861 lb/hr