The angular momentum of a rotation object is the product of its moment of inertia and its angular velocity:
L = Iω
L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.
Apply the conservation of angular momentum. The total angular momentum before disks A and B are joined is:
L_{before} = (3.3)(6.6) + B(-9.3)
L_{before} = -9.3B+21.78
where B is the moment of inertia of disk B.
The total angular momentum after the disks are joined is:
L_{after} = (3.3+B)(-2.1)
L_{after} = -2.1B-6.93
L_{before} = L_{after}
-9.3B + 21.78 = -2.1B - 6.93
B = 4.0kg·m²
The moment of inertia of disk B is 4.0kg·m²
Yes, a puddle of water is an object in motion.
Answer: Search Results
Featured snippet from the web
Answer: Surface waves can have characteristics of both longitudinal and transverse waves in the following way; The motion of the surface waves is up and down which is perpendicular to the direction of the wave. This is similar to the motion of transverse waves whereas the the motion of longitudinal.
Explanation: