1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
3 years ago
5

A hydraulic jump is induced in an 80 ft wide channel.The water depths on either side of the jump are 1 ft and 10 ft.Please calcu

late: a) The velocity of the faster moving flow. b) The flow rate (discharge). c) The Froude number of the sub-critical flow. d) The flow energy dissipated in the hydraulic jump (expressed as percentage of the energy prior to the jump). e) The critical depth.
Engineering
2 answers:
krek1111 [17]3 years ago
7 0

Answer:

a) 42.08 ft/sec

b) 3366.33 ft³/sec

c) 0.235

d) 18.225 ft

e) 3.80 ft

Explanation:

Given:

b = 80ft

y1 = 1 ft

y2 = 10ft

a) Let's take the formula:

\frac{y2}{y1} = \frac{1}{5} * \sqrt{1 + 8f^2 - 1}

10*2 = \sqrt{1 + 8f^2 - 1

1 + 8f² = (20+1)²

= 8f² = 440

f² = 55

f = 7.416

For velocity of the faster moving flow, we have :

\frac{V_1}{\sqrt{g*y_1}} = 7.416

V_1 = 7.416 *\sqrt{32.2*1}

V1 = 42.08 ft/sec

b) the flow rate will be calculated as

Q = VA

VA = V1 * b *y1

= 42.08 * 80 * 1

= 3366.66 ft³/sec

c) The Froude number of the sub-critical flow.

V2.A2 = 3366.66

Where A2 = 80ft * 10ft

Solving for V2, we have:

V_2 = \frac{3666.66}{80*10}

= 4.208 ft/sec

Froude number, F2 =

\frac{V_2}{g*y_2} = \frac{4.208}{32.2*10}

F2 = 0.235

d) El = \frac{(y_2 - y_1)^3}{4*y_1*y_2}

El = \frac{(10-1)^3}{4*1*10}

= \frac{9^3}{40}

= 18.225ft

e) for critical depth, we use :

y_c = [\frac{(\frac{3366.66}{80})^2}{32.2}]^1^/^3

= 3.80 ft

Savatey [412]3 years ago
6 0

Answer:

(a). 42.1 ft/s, (b). 3366.66 ft^3/s, (c). 0.235, (d). 18.2 ft, (e). 3.8 ft.

Explanation:

The following parameters are given in the question above and they are;

Induced hydraulic jump, j = 80 ft wide channel, and the water depths on either side of the jump are 1 ft and 10 ft. Let k1 and k2 represent each side of the jump respectively.

(a). The velocity of the faster moving flow can be calculated using the formula below;

k1/k2 = 1/2 [ √ (1 + 8g1^2) - 1 ].

Substituting the values into the equation above a s solving it, we have;

g1 = 7.416.

Hence, g1 = V1/ √(L × k1).

Therefore, making V1 the subject of the formula, we have;

V1 = 7.416× √ ( 32.2 × 1).

V1 = 42.1 ft/s.

(b). R = V1 × j × k1.

R = 42.1 × 80 × 1.

R = 3366.66 ft^3/s.

(c). Recall that R = V2 × A.

Where A = 80 × 10.

Therefore, V2 = 3366.66/ 80 × 10.

V2 = 4.21 ft/s.

Hence,

g2 = V1/ √(L × k2).

g2 = 4.21/ √ (32.2 × 10).

g2 = 0.235.

(d). (k2 - k1)^3/ 4 × k1k2.

= (10 - 1)^3/ 4 × 1 × 10.

= 18.2 ft.

(e).The critical depth;

[ (3366.66/80)^2 / 32.2]^ 1/3.

The The critical depth = 3.80 ft.

You might be interested in
1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty per
KiRa [710]

Answer:

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

7 0
3 years ago
is released from under a vertical gate into a 2-mwide lined rectangular channel. The gate opening is 50 cm, and the flow rate in
SVEN [57.7K]

Answer:

hello your question is incomplete attached below is the complete question

answer: There is a hydraulic jump

Explanation:

First we have to calculate the depth of flow downstream of the gate

y1 = C_{c} y_{g} ----------- ( 1 )

Cc ( concentration coefficient ) = 0.61  ( assumed )

Yg ( depth of gate opening ) = 0.5

hence equation 1 becomes

y1 = 0.61 * 0.5 = 0.305 m

calculate the flow per unit width q

q = Q / b ----------- ( 2 )

Q = 10 m^3 /s

 b = 2 m

hence equation 2 becomes

q = 10 / 2 = 5 m^2/s

next calculate the depth before hydraulic jump y2 by using the hydraulic equation

answer : where  y1 < y2 hence a hydraulic jump occurs in the lined channel

attached below is the remaining part of the solution

4 0
3 years ago
A converging-diverging nozzle has an area ratio of 5.9. (1) Determine the (P0/Pt) values corresponding to the 1st, 2nd, and 3rd
nata0808 [166]

Answer:

Check the explanation

Explanation:

The Total pressure is the overall of fixed or static pressure p, the dynamic pressure q, as well as gravitational head. Total pressure can also be referred to as the measure of the overall energy of the airstream, and is the same to static pressure plus velocity pressure.

kindly check the step by step solution in the attached image below to Determine the (P0/Pt) values corresponding to the 1st, 2nd, and 3rd critical points.

5 0
3 years ago
Which of the following is a common use for commas?
andreyandreev [35.5K]

Answer:

connecting two independent clauses

4 0
3 years ago
Read 2 more answers
Think of one example where someone would need to calculate the net force on a person at the waater park
ValentinkaMS [17]
Well Bob would need to calculate to net force of someone going down a water slide. Since the person is going down the slide, the person will go faster, depending on their mass/weight and the gravitational pull.
7 0
3 years ago
Other questions:
  • Compare a series circuit powered by six 1.5-volt batteries to a series circuit powered by a single 9-volt battery. Make sure the
    6·1 answer
  • Which of the following is an example of an iterative process?
    12·1 answer
  • A steel bar 110 mm long and having a square cross section 22 mm on an edge is pulled in tension with a load of 89,000 N, and exp
    15·1 answer
  • A converging - diverging frictionless nozzle is used to accelerate an airstream emanating from a large chamber. The nozzle has a
    15·2 answers
  • 6. Given a sheet of metal that is 1.2 cm wide, 3.8 cm long and 1.0 mm thick with a density of 8.57 g/cm3, calculate the mass of
    8·1 answer
  • What is the difference between a Datum and a Datum Feature? a) A Datum and Datum Feature are synonymous. b) A Datum is theoretic
    14·1 answer
  • Identify the measurement shown in figure 7 and state in centimeters ​
    5·1 answer
  • A BOD test is to be run on a sample of wastewater that has a five-day BOD of 230 mg/L. If the initial DO of a mix of distilled w
    15·1 answer
  • Pointttttttttttttssssssssssss
    12·1 answer
  • can anyone help me with this please.i have the current and pf for branch 1 and 2 but cant figure out the total current, pf and a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!