Answer:
26 lbf
Explanation:
The mass of the satellite is the same regardless of where it is.
The weight however, depends on the acceleration of gravity.
The universal gravitation equation:
g = G * M / d^2
Where
G: universal gravitation constant (6.67*10^-11 m^3/(kg*s))
M: mass of the body causing the gravitational field (mass of Earth = 6*10^24 kg)
d: distance to that body
15000 miles = 24140 km
The distance is to the center of Earth.
Earth radius = 6371 km
Then:
d = 24140 + 6371 = 30511 km
g = 6.67*10^-11 * 6*10^24 / 30511000^2 = 0.43 m/s^2
Then we calculate the weight:
w = m * a
w = 270 * 0.43 = 116 N
116 N is 26 lbf
Annual Payment where F is accumulated sum of amount, n is number of years and i is annual rate of interest. The standard notation equation is in the image since i can’t type it-
Answer:
Explanation:
The step by step analysis is as shown in the attached files.
C, because a narrow structure evacuation below surface ground isn’t the best and a structure holding forces and isn’t to do with the question at all and d doesn’t matter if there include away or not
Answer:
def theRoundTrip(movement):
x=0
y=0
for i in movement:
if i not in ["U","L","D","R"]:
print("bad input")
return
if i=="U":
y+=1
if i=="L":
x-=1
if i=="D":
y-=1
if i=="R":
x+=1
return x==0 and y==0