On a map showing temperature distributions, the lines that connect points of equal or same temperature are called isotherm. These are also known as contour lines and are usually presented based on a given date or time on a geographic map.
It's hard to tell exactly what's happening in that 110 cm that you marked over the wave. What is under the ends of the long arrow ? How many complete waves ? I counted 4.5 complete waves ... maybe ?
If there are 4.5 complete waves in 110cm, then the length of 1 wave is (110/4.5)=24.44cm.
Frequency = speed/wavelength
Frequency = 2m/s /0.2444m
Frequency = 8.18 Hz
It defines that if two thermodynamic systems are each in equilibrium with a third system, then they are in equilibrium with each other.
Answer: Mean Arterial Pressure is directly proportional to Cardiac Output and Systemic Vascular Resistance and also directly proportional to Central Venous Pressure.
Explanation: Based on the relationship of flow, pressure and resistance, the mean arterial pressure is determined by the cardiac output (CO), systemic vascular resistance (SVR), and central venous pressure (CVP). This relationship is given by:
MAP = (CO x SVR) + CVP
Which is alternatively expressed as:
MAP = CO x SVR (this is because at any point in time in blood circulation, the central venous pressure is always near to zero mmHg.
Due to this direct relationship, any factor affecting the cardiac output and the Systemic Vascular Resistance would cause a corresponding change in the Mean Arterial Pressure.
It is also worthy to note that If Cardiac Output and Systemic Vascular Resistance change reciprocally (inversely) and proportionately, then Mean Arterial Pressure will not change. The plotted graph is one of positive slope.
The whole relationship occurs when blood is pumped out of the left ventricle into the aorta and distributing arteries, creating pressure.