Answer:
8.1 N/49 N=0.1653 which means 16.53% of the weight of the object on Earth.
Explanation:
On the Moon, where the gravitational constant is 1.62
, the weight of the 5 kg object will be: 
Where the answer is in Newtons (N) since all quantities are given in the SI system.
On Earth, on the other hand, the weight of the object is:

Therefore the object's weight on the Moon compared to that on Earth will be:

That is, 16.53% of the weight the object has on Earth.
Answer:
Volt
Explanation:
Voltage is what makes electric charges move. ... Voltage is also called, in certain circumstances, electromotive force (EMF). Voltage is an electrical potential difference, the difference in electric potential between two places. The unit for electrical potential difference, or voltage, is the volt.
The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt, applied to these points, produces in the conductor a current of one ampere, the conductor not being the seat of any electromotive force.
The coulomb (symbolized C) is the standard unit of electric charge in the International System of Units (SI). ... In terms of SI base units, the coulomb is the equivalent of one ampere-second. Conversely, an electric current of A represents 1 C of unit electric charge carriers flowing past a specific point in 1 s.
An ampere is a unit of measure of the rate of electron flow or current in an electrical conductor. One ampere of current represents one coulomb of electrical charge (6.24 x 1018 charge carriers) moving past a specific point in one second.
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m
Answer:
1. The length is 8.35m
2. The period on the moon is 14.05 secs
Explanation:
1. Data obtained from the question. This includes the following:
Period (T) = 5.8 secs
Acceleration due to gravity (g) = 9.8 m/s2
Length (L) =...?
The length can be obtained by using the formula given below:
T = 2π√(L/g)
5.8 = 2π√(L/9.8)
Take the square of both side
(5.8)^2 = 4π^2 x L/ 9.8
Cross multiply
4π^2 x L = (5.8)^2 x 9.8
Divide both side by 4π^2
L = (5.8)^2 x 9.8 / 4π^2
L= 8.35 m
2. Data obtained from the question. This includes the following:
Acceleration due to gravity (g) = 1.67 m/s2
Length (L) = 8.35m (the length remains the same)
Period (T) =?
The period can be obtained as follow:
T = 2π√(L/g)
T = 2π√(8.35/1.67)
T = 14.05 secs
Therefore, the period on the moon is 14.05 secs
In this question a lot of information's are provided. Among the information's provided one information and that is the time of 4 seconds is not required for calculating the answer. Only the other information's are required.
Mass of the block that is sliding = 5.00 kg
Distance for which the block slides = 10 meters/second
Then we already know that
Momentum = Mass * Distance travelled
= (5 * 10) Kg m/s
= 50 kg m/s
So the magnitude of the blocks momentum is 50 kg m/s. The correct option among all the given options is option "b".