Answer:
19.3m/s
Explanation:
Use third equation of motion

where v is the velocity at halfway, u is the initial velocity, g is gravity (9.81m/s^2) and h is the height at which you'd want to find the velocity
insert values to get answer
![v^2-0^2=2(9.81m/s^2)(38/2)\\v^2=9.81m/s^2 *38\\v^2=372.78\\v=\sqrt[]{372.78} \\v=19.3m/s](https://tex.z-dn.net/?f=v%5E2-0%5E2%3D2%289.81m%2Fs%5E2%29%2838%2F2%29%5C%5Cv%5E2%3D9.81m%2Fs%5E2%20%2A38%5C%5Cv%5E2%3D372.78%5C%5Cv%3D%5Csqrt%5B%5D%7B372.78%7D%20%5C%5Cv%3D19.3m%2Fs)
A thermogram<span> enables the human eye to "see" light in the infrared range of the electromagnetic spectrum.</span>
To solve this problem we will apply the concepts related to the conservation of kinetic energy and elastic potential energy. Thus we will have that the kinetic energy is

And the potential energy is

Here,
m = mass
v = Velocity
x = Displacement
k = Spring constant
There is equilibrium, then,
KE = PE

Our values are given as,

Replacing we have that


Therefore the speed of the cart is 2.19m/s
momentum(p) = mass(m) x velocity(v)
KE = kinetic energy = 1/2 mv²
a.
the ratio of the momentum of the SUV to that of the car

b. the ratio of the KE of the SUV to that of the car

Answer:
Particles vibrate parallel to the direction the sound travels