Answer:
the protein capsid of naked viruses is less susceptible to environmental . condition
Explanation:
because the envelop is made in part of phospholipids. once the envelop is lysed ,the virus loses its functiovnal receptors and still able to infect susceptible cells.
Answer:
The volume of this sample when the temperature is changed to 150 K and the pressure is changed to 160 kPa is 52.5 mL.
Explanation:
Boyle's law says that: "The volume occupied by a certain gaseous mass at constant temperature is inversely proportional to pressure" and is expressed mathematically as:
P * V = k
where k is a constant.
Charles's Law consists of the relationship that exists between the volume and the temperature of a certain quantity of ideal gas, which is maintained at a constant pressure, by means of a constant of proportionality that is applied directly. So Charles's law is a law that mathematically says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:

Gay-Lussac's law states that the pressure of a fixed volume of a gas is directly proportional to its temperature. In other words, if the volume of a certain quantity of ideal gas remains constant, the quotient between pressure and temperature remains constant:

Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Considering an initial state 1 and a final state 2, it is satisfied:

In this case:
- P1: 240 kPa
- V1: 70 mL
- T1: 300 K
- P2: 160 kPa
- V2: ?
- T2: 150 K
Replacing:

Solving:

V2= 52.5 mL
<u><em>The volume of this sample when the temperature is changed to 150 K and the pressure is changed to 160 kPa is 52.5 mL.</em></u>
Normal boiling point is 99.97 degrees C and 211.9 degrees ferinhight. And a pressure of 1atm or 101.325 kPa. Hope this helps :)
Answer:
false
Explanation:
The particles are held together too strongly to allow movement from place to place but the particles do vibrate about their position in the structure. With an increase in temperature, the particles gain kinetic energy and vibrate faster and more strongly