17 be cause i say so and if i dont help on this question i cant ask one
Q1)
the reaction that takes place is
lead nitrate reacting with potassium iodide to form lead iodide and potassium nitrate
balanced chemical equation for the reaction is as follows
Pb(NO₃)₂ + 2KI ----> PbI₂ + 2KNO₃
Q2)
mass of lead nitrate present - 0.600 g
number of moles = mass present / molar mass
number of moles - 0.600 g / 331.2 g/mol = 0.00181 mol
Q3)
mass of potassium iodide present - 0.850 g
number of moles = mass present / molar mass
number of moles of potassium iodide = 0.850 g / 166 g/mol = 0.00512 mol
Q4)
we have to calculate the number of moles of PbI₂ formed based on the number of moles of Pb(NO₃)₂ present assuming the whole amount of Pb(NO₃)₂ was used up
stoichiometry of Pb(NO₃)₂ to PbI₂ is 1:1
number of Pb(NO₃)₂ moles reacted - 0.00181 mol
therefore number of PbI₂ moles formed - 0.00181 mol
Q5)
next we have to calculate the number of moles of PbI₂ formed based on the amount of KI moles present , assuming all the moles of KI were used up in the reaction
stoichiometry of KI to PbI₂ is 2:1
number of moles of KI reacted - 0.00512 mol
then number of moles of PbI₂ formed - 0.00512 x 2 = 0.0102 mol
0.0102 mol of PbI₂ is formed
Q6)
limting reactant is the reactant that is fully consumed during the reaction. the amount of product formed depends on the amount of limiting reactant present
if lead nitrate is the limiting reactant
if 1 mol of Pb(NO₃)₂ reacts with 2 mol of KI
then 0.00181 mol of Pb(NO₃)₂ reacts with - 2 x 0.00181 mol of KI = 0.00362 mol
but 0.00512 mol of KI is present and only 0.00362 mol are required
therefore KI is in excess and Pb(NO₃)₂ is the limiting reactant
Pb(NO₃)₂ is the limiting reactant
Q7)
then the amount of PbI₂ formed depends on amount of Pb(NO₃)₂ present
therefore number of moles of PbI₂ formed is based on number of Pb(NO₃)₂ moles present
as calculated in Question number 4 - Q4
number of PbI₂ moles formed - 0.00181 mol
mass of PbI₂ formed - 461 g/mol x 0.00181 mol = 0.834 g
mass of PbI₂ formed - 0.834 g
Q8)
actual yield obtained is not always equal to the theoretical yield . therefore we have to find the percent yield. This tells us the percentage of the theoretical yield that is actually obtained after the experiment
percent yield = actual yield / theoretical yield x 100 %
percent yield = 0.475 g / 0.834 g x 100 % = 57.0 %
percent yield of lead iodide is 57.0 %
Answer:
In the 1970s, Epel and other researchers showed that calcium is the essential factor that sparks development in eggs. As calcium levels rise, metabolic changes occur that cause the egg to divide and form into an embryo.
Explanation:
Answer:
The chemical characteristics of carbon affect the characteristics of organic molecules due to its tetravalent nature. It has four valence electrons in which it shares with other elements in order to form an octet configuration.
Carbon atoms are also capable of forming double and triple bonds with other atoms. These properties help determine the functional group present and gives us a knowledge of the chemical features such as polarity, melting and boiling present in the compound.
Given the mass percentage of HCl solution = 15.00 %
This means that 15.00 g HCl is present in 100 g solution
Moles of HCl = 
Density of the solution = 1.075 g/mL
Calculating the volume of solution from density and mass:

Converting volume from mL to L:

Calculating the molarity of HCl solution from moles and volume:
