Hello!
Ok so for this problem we use the ideal gas law of PV=nRT and I take it that the scientist needs to store 0.400 moles of gas and not miles.
So if we have
n=0.400mol
V=0.200L
T= 23degC= 273k+23c=296k
R=ideal gas constant= 0.0821 L*atm/mol*k
So now we rearrange equation for pressure(P)
P=nRT/V
P=((0.400mol)*(0.0821 L*atm/mol*k)*(296k))/(0.200L) = 48.6 atm of pressure
Hope this helps you understand the concept and how to solve yourself in the future!! Any questions, please feel free to ask!! Thank you kindly!!!
Answer:
If a pure compound is distilled, the temperature of the head will be compared to the temperature of the pot. However, if there is an impurity present that strongly interacts with the molecules of the liquid, then the temperature must be increased to increase the vapor pressure of the liquid, eventually to atmospheric pressure, allowing the liquid to boil. Therefore, at the boiling point, the temperature of the pot will be higher than the temperature of the head.
Explanation:
when temperatures increase, pressures also do so, thus reaching boiling points where liquid states become gaseous.
Answer:
1. Covalent Bond
2. Ionic Bond
Explanation:
Covalent bonds are defined as the bond in which sharing of electrons takes place between atoms. The sharing of electrons is in equal number so that it form a stable balance of attraction and repulsion between atoms. In the given example of CO2 (first image) oxygen is sharing equal number of electrons with carbon to form a stable bond called covalent bond.
Ionic bonds are formed when valence electrons are transferred to other atoms and form oppositely charged ions. In ionic bond formation, the atoms that gain electrons become negatively charged and the atoms that loses electrons become positively charged. In the given example of Ca Cl2, Ca is also giving its 2 valence electrons to each Cl and there is no stable balance of attraction and repulsion between atoms.
Hence, the correct answer is:
1. Covalent Bond
2. Ionic Bond
<h2>question:How many significant figures are in 100.3</h2>
Answer:4
<u>Answer:</u> The final temperature of water is 38.5°C
<u>Explanation:</u>
To calculate the amount of heat released or absorbed, we use the equation:

where,
q = heat absorbed = 1.506 kJ = 1506 J (Conversion factor: 1 kJ = 1000 J)
m = mass of water = 30 g
c = specific heat capacity of water = 4.184 Jl/g.°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the final temperature of water is 38.5°C