Acceleration is a change in *speed* over time. In this case, the speed of the car increased by 90 km/hr in 6 s, giving it a rate of 90 km/hr/6s, or 15 km/hr/s. We’re asked for the acceleration in m/s^2, though, so we’ll need to do a few conversions to get our units straight.
There are 1000 m in 1 km, 60 min, or 60 * 60 = 3600 s in 1 hr, so we can change our rate to:
(15 x 1000)m/3600s/s, or (15 x 1000)m/3600 s^2
We can reduce this to:
(15 x 10)m/36 s^2 = 150 m/36 s^2
Which, dividing numerator and denominator by 36, gets us a final answer of roughly 4.17 m/s^2
This problem is about the rate of the current. It's important to know that refers to the quotient between the electric charge and the time, that's the current rate.

Where Q = 2.0×10^−4 C and t = 2.0×10^−6 s. Let's use these values to find I.

<em>As you can observe above, the division of the powers was solved by just subtracting their exponents.</em>
<em />
<h2>Therefore, the rate of the current flow is 1.0×10^2 A.</h2>
No I don’t think so. But it worth a try tho. Try it out.