Hi!Schrodinger equation is written as HΨ = EΨ, where h is said to be a Hamiltonian operator.
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3
Answer:33
Explanation:
F = frequency
N = Node count
w = wave lenght
v = wave velocity
L = distance wave traveled
First find wave length of laser
w = (2/(N))*(L)
w = (2/(10))*(8)
w = 1.6
then using (w), find velocity
V = (w)(F)
V = (1.6)*(108)
V = 288
Plug in V and the new frequency to solve for new node count
F = NV/2L
(600) = (N)*(288) / 2 * (8)
(N) = 33.33
there are 33 nodes
Answer:
Amp – an ampere a the unit for measuring electricity. The rate at which electricity flows is measured as an electric current. The electric current is measured in Amps.
Hope this helps:)
If correct, can I please have brainliest?
Thank you.
Answer:
a. mechanical; require a medium to travel through
Explanation:
Longitudinal, transverse and surface waves are types of mechanical waves. For example, within the longitudinal waves are the sound waves, which needs a medium to propagate like the air. This is why sound does not travel in a vacuum.
And an example of a transverse wave is the waves that form in the water when a rock is thrown (ripples), these waves need a medium (the water) to propagate.
On the other hand, electromagnetic waves such as light waves do not need a medium to propagate, this is why we can see the light of distant stars because their light travels through the vacuum until it reaches us.
So, the answer is:
Transverse, surface, and longitudinal waves are all mechanical waves because they require a medium to travel through .