D.) In order to calculate both of them, we must know the "FORCE" on the system.
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
Troposphere, stratosphere, mesosphere, thermosphere, exosphere
Answer:
Pressure applied to the needle is 7528 Pa
Explanation:
As we know by poiseuille's law of flow of liquid through a cylindrical pipe
the rate of flow through the pipe is given as

now we know that

radius = 0.2 mm
Length = 6.32 cm

now we have



now we have


Answer:
22.11 m / s
Explanation:
The falcon catches the prey from behind means both are flying in the same direction ( suppose towards the left )
initial velocity of falcon = 28 cos 35 i - 28 sin 35 j
( falcon was flying in south east direction making 35 degree from the east )
momentum = .9 ( 28 cos 35 i - 28 sin 35 j )
= 20.64 i - 14.45 j
initial velocity of pigeon
= 7 i
initial momentum = .325 x 7i
= 2.275 i
If final velocity of composite mass of falcon and pigeon be V
Applying law of conservation of momentum
( .9 + .325) V = 20.64 i - 14.45 j +2.275 i
V = ( 22.915 i - 14.45 j ) / 1.225
= 18.70 i - 11.8 j
magnitude of V
= √ [ (18.7 )² + ( 11.8 )²]
= 22.11 m / s