Answer:
30ms
Explanation:
you need to multiple the 10ms by 3s which gives you 30ms
The energy from the sun that reaches the corn is about two billionths.
Answer:
Thats her fault.........................b
Explanation:
Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,

Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?

a = -1.47 m/
(a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/
(since same friction force is applied)

s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
There's no such thing as a wave of white light. Every light wave with
a certain wavelength has some color. White light is a mixture of all
the different wavelengths with all of the different visible colors.
They're ALL there in white light. When they all enter your eye at
the same time, your brain gets the message of brightness with
no particular color, which we call "white light".