The final stabilized temperature will be between 0 °C and 50 °C.
<h3>
Calorimetry:</h3>
The enthalpy of fusion of ice is 334 J/g. The specific heat of water is 4.2 J/g.
To cool 100 g of water from 100 °C to 0 °C would require the removal of
4.2 x 100 x 100 = 42000 J.
To melt the ice would require the addition of
334 x 100 = 33400 J
∴ 42000 > 33400 thus you can melt all the ice and have some heat to spare, specifically 42000 - 33400 = 8600 J
Now use this to warm up 100+100 = 200 g of water at 0 °C
The final stabilized temperature;
8600 / (200 x 4.2) = 10.23 °C
Therefore, the final stabilized temperature is 10.23 °C
Learn more about Calorimetry here:
brainly.com/question/1989313
#SPJ4
Answer:
Initial velocity of the object, u = 5 m/s
Final velocity of the object, v = 8 m/s
Mass of the object, m = 100 kg
Time take by the object to accelerate, t = 6 s
Initial momentum = mu = 100 — 5 = 500 kg m sˆ’1
Final momentum = mv = 100 — 8 = 800 kg m sˆ’1
Force exerted on the object, F = mv – mu / t
= m (v-u) / t
= 800 – 500
= 300 / 6
= 50 N
Initial momentum of the object is 500 kg m sˆ’1.
Final momentum of the object is 800 kg m sˆ’1.
Force exerted on the object is 50 N.
mark this as brainliest!
<h2>
Option B is the correct answer.</h2>
Explanation:
Period of a spring mass arrangement is given by

where m is mass and k is spring constant.
So period of spring mass arrangement is independent of amplitude of motion.
Here amplitude changes from A to 2A.
Period for amplitude A is given by T.
Since period remains same for amplitude 2A also, the period is T.
Option B is the correct answer.
True
The electromagnet will become stronger if we add more coils because there are more field lines in a loop then there is in a straight piece of wire. In a solenoid there are a lot of loops and they are concentrated in the middle, as more loops are added the field lines get larger, therefore making the electromagnet stronger.