Answer:
Explanation:
Expression for velocity of wave produced in a hanging wire can be given as follows
Velocity v = 
where T is tension in wire and m is mass of wire per unit length.
In the given case
T = Mg + mg
= Mg
neglecting weight of rope
mass of the rope per unit length
= m / L
Velocity of wave
= 
= 
Answer:
The answer to your question is m₂ = 38.5 kg
Explanation:
Data
distance = d = 2.1 x 10⁻¹ m
Force = 3.2 x 10⁻⁶ N
m₁ = 55 kg
m₂ = ?
G = 6.67 x 10 ⁻¹¹ Nm²/kg²
Process
1.- To solve this problem use Newton's law of Universal Gravitation.
F = G m₁m₂ / r²
-Solve for m₂
m₂ = Fr² / Gm₁
2.- Substitution
m₂ = (3.2 x 10⁻⁶)(2.1 x 10⁻¹)² / (6.67 x 10⁻¹¹)(55)
3.- Simplification
m₂ = 1.411 x 10⁻⁷ / 3.669 x 10⁻⁹
4.- Result
m₂ = 38.5 kg
The three different motions are;
- The upward motion of the woman is constant
- The downward motion of the woman is also constant
- The horizontal motion of the woman is zero.
<h3>
What is force diagram?</h3>
Force diagram is a pictorial or graphical illustration of different forces acting on object.
In this given question, there two forces acting on the woman as depicted in the force diagram.
- The first force is surface force (Fs)
- The second force is force of Earth (FE)
In the given force diagram, the woman is in equilibrium, this implies that the surface force and the Earth force are equal.
The three different types of motion of the woman that are consistent with the force diagram include the following;
- The upward motion of the woman is constant
- The downward motion of the woman is also constant
- The horizontal motion of the woman is zero since there is no horizontal force on the woman.
Learn more about force diagram here: brainly.com/question/3624253
#SPJ1
Answer:
Explanation:
The relationship of the speed of sound, its frequency, and wavelength is the same as for all waves: vw = fλ, where vw is the speed of sound, f is its frequency, and λ is its wavelength.