Answer:
and 20.86 seconds are the values of the rate constant and the half-life for this process respectively..
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
= let initial amount of the reactant
a = amount left after decay process
We have :


t = 95 s


Half life is given by for first order kinetics::


and 20.86 seconds are the values of the rate constant and the half-life for this process respectively..
<u>Option b. </u>A smaller magnitude of momentum and more kinetic energy.
<h3>What is a momentum?</h3>
- In Newtonian physics, an object's linear momentum, translational momentum, or simply momentum is defined as the product of its mass and velocity.
- It has both a magnitude and a direction, making it a vector quantity. The object's momentum, p, is defined as: p=mv if m is the object's mass and v is its velocity (also a vector quantity).
- The kilogram metre per second (kg m/s), or newton-second in the International System of Units (SI), is the unit used to measure momentum.
- The rate of change of a body's momentum is equal to the net force exerted on it, according to Newton's second law of motion.
To know more about momentum, refer:
brainly.com/question/1042017
#SPJ4
The answer would be a.
a chemical change is a change to the chemical makeup of a substance so if the bonds are unchanged it would be a characteristic of a physical change
As per FBD while its accelerating upwards
we can say that

here normal force is given as


now mass is given as


now we will have


Now while accelerating downwards we can say by FBD

again plug in all values


Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz