1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
2 years ago
8

Two masses are attracted by a gravitational force of 7 N.

Physics
1 answer:
damaskus [11]2 years ago
3 0

Answer:

The answer to your question is: F  = 0.4375 N. The force will be 16 times lower than with the first conditions.

Explanation:

Data

F = 7 N

F = ?  if the masses is quartered

Formula

F = \frac{Km1m2}{r2}

Process

Normal conditions F = Km₁m₂/r²  = 7              

When masses quartered        F = K(m₁/4)(m₂/4)/r²  = ?

                                                F = K(m₁m₂/16)/r²

                                                F = K(m₁m₂/16r²      = 7/16  = 0.4375 N

You might be interested in
(DESPERATE WILL GIVE BRAINLIST AND THANKS PLZ HURRY)
DaniilM [7]

Answer:

i think its A. hope this helps!

4 0
2 years ago
Read 2 more answers
How does the momentum of a fast object compare to that of a slow object if they both have the same mass?
Varvara68 [4.7K]
The momentum of a fast object compared to that of a slow object even if they both have the same mass, is their velocities.

Having same mass but different velocities results in different momentum.

Example: mass = 10kg
Velocity 1 = 50 Velocity 2 = 100
Momentum 1 = 10×50 = 500 Ns
Momentum 2 = 10×100 = 1000 Ns

Hope it helped!
3 0
2 years ago
Let us remember your previous lesson on Physical Press Components! Directions: Analyze the folawna fitness components. Put a che
mart [117]

Answer:

5 Muscular and strength

8 0
2 years ago
Each of the gears a and b has a mass of 675 g and has a radius of gyration of 40 mm, while gear c has a mass of 3. 6 kg and a ra
navik [9.2K]

9.87 seconds

The time required for this system to come to rest is equal to 9.87 seconds.

We have the following data:

Mass of gear A = 675 g to kg = 0.675 kg.

Radius of gear A = 40 mm to m = 0.04 m.

Mass of gear C = 3.6 kg.

Radius of gear C = 100 mm to m = 0.1 m.

How can I calculate the time needed?

We would need to figure out the moment of inertia for gears A and C in order to compute the time needed for this system to come to rest.

Mathematically, the following formula can be used to determine the moment of inertia for a gear:

I = mr²

Where:

m is the mass.

r is the radius.

We have, For gear A:

I = mr²

I = 0.675 × 0.04²

I = 0.675 × 0.0016

I = 1.08 × 10⁻³ kg·m².

We have, For gear C:

I = mr²

I = 3.6 × 0.1²

I = 3.6 × 0.01

I = 0.036 kg·m².

The initial angular velocity of gear C would therefore be converted as follows from rotations per minute (rpm) to radians per second (rad/s):

ωc₁ = 2000 × 2π/60

ωc₁ = 4000π/60

ωc₁ = 209.44 rad/s.

Also, the initial angular velocity of gears A and B is given by:

ωA₁ = ωB₁ = rc/rA × (ωc₁)

ωA₁ = ωB₁ = 0.15/0.06 × (209.44)

ωA₁ = ωB₁ = 2.5 × (209.44)

ωA₁ = ωB₁ = 523.60 rad/s.

Taking the moment about A, we have:

I_A·ωA₁ + rA∫F_{AC}dt - M(f)_A·t = 0

On Substituting the given parameters into the formula, we have;

(1.08 × 10⁻³)·(523.60) + 0.06∫F_{AC}dt - 0.15t = 0

0.15t - 0.06∫F_{AC}dt = 0.56549   ----->equation 1.

Similarly, the moment about B is given by:

0.15t - 0.06∫F_{BC}dt = 0.56549    ------>equation 2.

Note: Let x = ∫F_{BC}dt + ∫F_{AC}dt

Adding eqn. 1 & eqn. 2, we have:

0.3t - 0.06x = (0.56549) × 2

0.3t - 0.06x = 1.13098  ------>equation 3.

Taking the moment about A, we have:

Ic·ωc₁ - rC∫F_{AC}dt - rC∫F_{BC}dt - Mc(f)_A·t = 0

0.036(209.44) - 0.3t - 0.15(∫F_{BC}dt + ∫F_{AC}dt) = 0

0.3t + 0.15x = 7.5398    ------->equation 4.

Solving eqn. 3 and eqn. 4 simultaneously, we have:

x = 30.5 Ns.

Time, t = 9.87 seconds.

To learn more about moment of inertia visit:

brainly.com/question/15246709

#SPJ4

6 0
2 years ago
Vector A = 50 m,<br> 20°. Vector -3A would be equal to
Kruka [31]

Answer:

Many familiar physical quantities can be specified completely by giving a single number and the appropriate unit. For example, “a class period lasts 50 min” or “the gas tank in my car holds 65 L” or “the distance between two posts is 100 m.” A physical quantity that can be specified completely in this manner is called a scalar quantity. Scalar is a synonym of “number.” Time, mass, distance, length, volume, temperature, and energy are examples of scalar quantities.

3 0
3 years ago
Other questions:
  • A cylinder with a mass M and radius r is floating in a pool of liquid. The cylinder is weighted on one end so that the axis of t
    15·1 answer
  • The function x = (3.0 m) cos[(4π rad/s)t + π/5 rad] gives the simple harmonic motion of a body. Find the following values at t =
    10·1 answer
  • A constant 10.0-N horizontal force is applied to a 20.0-kg cart at rest on a level floor. If friction is negligible, what is the
    9·1 answer
  • Need physics help! (there’s a picture)
    11·1 answer
  • When a space shuttle was launched, the astronauts onboard experienced an acceleration of 29.0 m/s2 . If one of the astronauts ha
    13·1 answer
  • An object with a mass of 32 kg has an initial energy of 500). At the end of the experimentthe velocity of the object is recorded
    5·1 answer
  • A train is rounding a circular curve whose radius is 2.55 x 102 m. At one instant, the train has an angular acceleration of 1.48
    7·1 answer
  • What is fundamental quantity?​
    11·2 answers
  • A footballer kicks a football of mass 430 g and it flies off at a speed of 8 m/s. What is the KE of the football?
    14·1 answer
  • If for a given pair of media CR
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!